K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

      Câu này hơi kì, vì đề đã nói rõ tiếp tuyến cắt Oz tại M, thế thì M chạy trên tia Oz còn hỏi gì nữa??? 
mình nghĩ câu này, nên "giấu" cái Oz đi, mà cho M là trung điểm của CD, làm thế nhé 
Thấy tứ giác ABDC là hình thang vuông, có OM là đường trung bình (qua trung điểm 2 cạnh bên) 
=> OM // Ax // By => M chạy trên tia qua O và // Ax (chính là Oz) 
 

30 tháng 8 2017

mơn bạn nha

28 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

17 tháng 9 2021

bạn tự vẽ hình giúp mik nha

a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có

OM là tia phân giác \(\widehat{AOI}\)

ON là tpg \(\widehat{IOB}\)

mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)

vậy \(\widehat{MON}=90^o\)

b)từ t/c 2 tiếp tuyến cắt nhau ta có

MA=MI;BN=NI

\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)

c)ta có:AM.BN=MI.NI(1)

xét \(\Delta MON\) vuông tại O có

MI.NI(đlý)=\(OI^2=R^2\)(2)

từ (1) và (2)\(\Rightarrow AM.BN=R^2\)

25 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

25 tháng 12 2021

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB

7 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà: MN = MI + IN

Suy ra: MN = AM + BN

a: Xét (O) có

MI,MA là tiếp tuyến

nên MI=MA và OM là phân giác của góc AOI(1)

Xét (O) có

NI,NB là tiếp tuyến

nên NI=NB và ON là phân giác của góc IOB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

b: MN=MI+IN

=>MN=MA+NB

c: Gọi H là trung điểm của MN

Xét hình thang AMNB có

O,H lần lượt là trung điểm của AB,MN

nên HO là đường trung bình

=>HO//AM//BN

=>HO vuông góc AB

=>AB là tiếp tuyến của(H)

19 tháng 10 2021

a: Xét (O) có

CE là tiếp tuyến có E là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CE=CA

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DE là tiếp tuyến có E là tiếp điểm

Do đó: DB=DE

Ta có: CD=CE+ED

nên CD=CA+DB

11 tháng 12 2021

a: Xét (O) có 

CE là tiếp tuyến

CA là tiếp tuyến

Do đó: CE=CA

Xét (O) có 

DE là tiếp tuyến

DB là tiếp tuyến

Do đó: DE=DB

Ta có: CE+DE=CD

nên CD=CA+DB