Một liên đội khi xếp hàng 2 , hàng 3, hàng 4, hàng 5, hàng 6, đều thiếu một người , nhưng xếp hàng 7 thì vừa đủ. Biết số học sinh chưa đến 300. Tính số học sinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đội viên là a.
Ta có: a chia 2,3,4,5 đểu dư 1 => a - 1 chia hết cho 2, 3, 4, 5
=> a - 1 thuộc BC(2, 3, 4, 5)
Mà BCNN(2, 3, 4, 5) = 60
=> a - 1 thuộc B(60) = {0;60;120;180;240:.....}
Vì a - 1 thuộc khoảng 150 đến 200
=> a - 1 = 180 => a = 181
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Gọi số học sinh là a, \(\left(a\in N\right)\)
Vì số học sinh khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người, nhưng khi xếp hàng 7 thì vừa đủ nên :
a + 1 chia hết cho 2
a + 1 chia hết cho 3
a + 1 chia hết cho 4
a + 1 chia hết cho 5
a + 1 chia hết cho 6
a chia hết cho 7
=> a + 1 thuộc BC (2, 3, 4, 5, 6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2 . 3
BCNN (2, 3, 4, 5, 6) = 22 . 3 . 5 = 60
a + 1 thuộc BC (2, 3, 4, 5, 6) = B (60) = {0 ; 60 ; 120 ; 240 ; 300 ; 360 ; ...}
=> a thuộc {59 ; 119 ; 239 ; 299 ; 359 ; ...}
Mà a chia hết cho 7 ; a < 300 => a = 119
Vậy số học sinh là 119 học sinh.
Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4 = 22
5 = 5
6 = 2.3
BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}
Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}
Suy ra: m ∈ {59;119;179;239;299}
Ta có: 59 ⋮̸ 7; 119 ⋮ 7; 179 ⋮̸ 7; 239 ⋮̸ 7; 299 ⋮̸ 7
Vậy khối có 119 học sinh.
Gọi số học sinh là a (0<a<300)
Vì a:2,3,4,5,6 đều thiếu 1
nên a+1 chia hết cho 2,3,4,6,5 (1<a+1<301)
vì a chia hết cho 7
nên (a+1):7(dư1)
ta có
2=2
3=3
4=2^2
5=5
6=2x3
Suy ra BCNN(2,3,4,5,6) = 2^2x3x5 = 60
BC(2,3,4,5,6) = B(60) = {0;60;120;180;240;360;...}
Mà 1<a+1<301
Suy ra a+1 = {60;120;180;240}
Ta có
60:7(dư4)
120:7(dư1)
180:7(dư 5)
240:7 (dư2)
Mà a+1:7(dư 1)
Suy ra a+1=120
a =120-1
a =119
Vậy số học sinh là 119
do số học sinh khi xếp hàng 2 , hàng 3 , hàng 4 , hàng 5, hàng 6 đều thiếu một học sinh
nên tổng số học sinh khi cộng thêm 1 sẽ chia hết cho 2,3,4,5,6
Gọi tổng số học sinh là a (học sinh)
suy ra (a+1) là BC ( 2,3,4,5,6)
(a+1) = 60; 120;180; 240; 300; 360 ...
a= 58; 119; 179; 239; 299; 359;...
mà khi xếp 7 hàng thì vừa đủ và a <300
nên a= 119
vậy học sinh khổi 6 là 119 học sinh
chúc pạn hok tốt
khó quá à
Đó là số 114