cho hình chữ nhật ABCD, nối C với một điểm E bất kì trên đường chéo BD. trên tia đối của tia EC lấy điểm F sao cho EF=EC. vẽ FH và FK lần lượt vuông góc với AB và AD. cmr: a, AF song song với DB và KH song song với AC. biết AKFH là hình chữ nhật
b, E,H,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
EF giao nhau BC=P
Vì PC và FN cùng vuông góc với DC nên PC song song với FN
\(\Rightarrow\)∠EMP=∠ENF
Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật
\(\Rightarrow\)∠CMN=∠MNF
\(\Rightarrow\)∠EMP=∠MNF
Tới đây thôi nha