BIẾT \(\frac{X}{Y+Z+T}=\frac{Y}{Z+T+X}=\frac{Z}{T+X+Y}=\frac{T}{X+Y+Z}\)
TÍNH P=\(\frac{X+Y}{Z+T}+\frac{X+Z}{T+X}+\frac{Z+T}{X+Y}+\frac{T+X}{Y+Z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lí Pain có
\(\frac{\left(x+y+z+t\right)}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
tương tự
theo định lí Pain có
\(E=\frac{2\left(x+y+z+t\right)}{2\left(x+y+z+t\right)}=1\)
P/S : chém bừa ( i love you)
\(\text{Xét 2 khoảng ta có:}\)
* \(\text{Nếu x + y + z + t = 0 thì }E=-1+-1+-1+-1=-4\)
* \(\text{Nếu }x+y+z+t\ne0\text{ thì }\)
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{y+z+t+x+z+t+x+y+t+x+y+z}=\frac{1}{3}\left(\text{Dãy tỉ sô băng nhau}\right)\)
\(\Rightarrow x=\frac{1}{3\left(y+z+t\right)};y=\frac{1}{3\left(x+z+t\right)};z=\frac{1}{3\left(x+y+t\right)};t=\frac{1}{3\left(x+y+z\right)}\)
\(\Rightarrow x=y=z=t\)
Lấy ví dụ là x ta có:
\(E=\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}=4\)
TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1
Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z
do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 tích đúng nha
xét x+y+z+t=0
=>x+y=-(z+t)
y+z=-(t+x)
\(\Rightarrow M=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+y}{-\left(x+y\right)}+\frac{y+z}{-\left(y+z\right)}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(t+x\right)}\)
\(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
xét x+y+z+t\(\ne0\)
\(\frac{x}{y+z+t}+\frac{y}{x+z+t}+\frac{z}{x+y+t}+\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
=>3x=x+y+z
=>4x=x+y+z+t
3y=x+z+t
=>4y=x+y+z+t
3z=x+y+t
=>4z=x+y+z+t
3t=x+y+z+t
=>4t=x+y+z+t
=>4x=4y=4z=4t
=>x=y=z=t
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}=\frac{x+y}{x+y}+\frac{x+y}{x+y}+\frac{x+y}{x+y}+\frac{x+y}{x+y}\)
=1+1+1+1=4
Vậy P=-4 khi \(x+y+z+t=0\)
P=4 khi \(x+y+z+t\ne0\)
Ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
Thêm 1 vào mỗi phân số ta được:
\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
- Nếu x + y + z + t \(\ne\) 0 thì x = y = z = t
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)
- Nếu x + y + z + t = 0 thì x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
Khi đó \(P=1+1+1+1=4\)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
+, Nếu x+y+z+t = 0 => M = -1 + (-1) + (-1) + (-1) = -4
+, Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/x+z+t = z/x+t+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y=1/3.(z+x+t) ; z=1/3.(x+y+t) ; t=1/3.(x+y+z)
=> x=y=z=t
=> M = 1+1+1+1 = 4
Tk mk nha
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
+) Xét x + y + z + t= 0 => x + y = -(z+t) ; y + z = -(x+t); z+t = -(x+y); t+x = -(y+z)
\(\Rightarrow M=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét x+y+z+t khác 0 => x=y=z=t
\(\Rightarrow M=1+1+1+1=4\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
- Nếu \(x+y+z+t\ne0\Rightarrow x=y=z=t\)
=> \(P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)
- Nếu \(x+y+z+t=0\Rightarrow x+y=-\left(z+t\right);y+z=-\left(t+x\right);z+t=-\left(x+y\right);t+x=-\left(y+z\right)\)
=> \(P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}=\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P = 4 hoặc P = -4