5x^2 + 3 . ( x + y )^2 - 5y^2 ( Phân tích theo cách lớp 8 nhé )
Tìm x , y đồng thời thỏa mãn :
x^2 - 4y^2 = 24 và 5x + 14y - 2xy = 35
Phân tích đa thức thành nhân tử bằng phương pháp dùng ẩn phụ :
A = ( 4x - 2 ).( 10x + 4 ).( 5x + 7 ).( 2x + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
Ta có:
\(5x+14y-2xy=35\)
\(\Leftrightarrow\left(5x-35\right)+\left(14y-2xy\right)=0\)
\(\Leftrightarrow\left(7-x\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=2,5\end{cases}}\)
Thế x = 7 vào cái còn lại ta được
\(7^2-4y^2=24\)
\(\Leftrightarrow y^2=\frac{25}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=-\frac{5}{2}\end{cases}}\)
Thế y = 2,5 vào cái còn lại ta được
\(x^2-4.2,5^2=24\)
\(\Leftrightarrow x^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
1
a, 2x2+4x+2-2y2 = 2(x2+2x+1-y2)= 2[(x+1)2-y2 ] = 2(x-y+1)(x+y+1)
b, 2x - 2y - x2 + 2xy - y2= 2(x -y) - (x2 - 2xy + y2) = 2(x-y)-(x-y)2=(x-y)(2-x+y)
c, x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x-y-1)(x+y+1)
d, x2-4x-2xy-4y+y2= x2-2xy+y2-4x-4y=(x-y)
2.
a, x2-3x+2=x2-x-2x+2=x(x-1)-2(x-1)=(x-2)(x-1)
b, x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+3)(x+2)
c, x2+6x-6=
không cần phương pháp đó đâu, mik có cách này hay hơn nè
tìm nghiệm của đthức trên
nếu nghiệm là số dương thì khi phân tích xong sẽ có 1 tsố là (x-1)
nếu nghiệm là số âm thì...........................................1..........(x+1)
VD: phân tích thành nhân tử: 2x^2+5x-3
Nghiệm của đa thức trên là 3
=> 2x^2+6x-x-3
=> 2x(x+3)-1(x+3)
=> (2x-1)(x+3)
ĐÓ, KICK MIK NHA
a) 5x^2 + 6xy + y^2
=5x2+5xy+xy+y2
=5x.(x+y)+y.(x+y)
=(x+y)(5x+y)
b) x^2 + 2xy - 15y^2.
=x2-3xy+5xy-15y2
=x.(x-3y)+5y.(x-3y)
=(x-3y)(x+5y)
c) (x-y)^2 + 4(x-y) - 12
=(x-y)2+4(x-y)+4-16
=(x-y+2)2-16
=(x-y+2-4)(x-y+2+4)
=(x-y-2)(x-y+6)
d) x^3 - 2x - 4.
=x3+2x2+2x-2x2-4x-4
=x.(x2+2x+2)-2.(x2+2x+2)
=(x2+2x+2)(x-2)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x^2+2xy+y^2\right)-\left(x+y\right)-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(t=x+y\) thì ta có:
\(t^2-t-12=t^2-4t+3t-12\)
\(=t\left(t-4\right)+3\left(t-4\right)=\left(t+3\right)\left(t-4\right)\)
\(=\left(x+y+3\right)\left(x+y-4\right)\)
mình ko biết ai ra đề đặt ẩn nhưng bài này cần j đặt ẩn đâu nhỉ :v nhìn cái ra ngay mà :V
6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)
7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)
8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)
9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)
10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)
6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )
7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )
8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )
9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )
10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )
Áp dụng hàm đẳng thức của lớp 8 là ra.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)