K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017
GTNN của A=1 <=>2< hoặc =x < hoặc =3
24 tháng 12 2017

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

1 tháng 11 2017

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|x+1\right|=\left|2001-x\right|+\left|x+1\right|=\left|2001-x+x+1\right|=2002\)

Dấu " = " khi \(\left\{{}\begin{matrix}2001-x\ge0\\x+1\ge0\end{matrix}\right.\Rightarrow-1\le x\le2001\)

Vậy \(MIN_A=2002\) khi \(-1\le x\le2002\)

1 tháng 11 2017

Ta có: \(\left\{{}\begin{matrix}\left|x-2001\right|=\left|2001-x\right|\ge2001-x\\\left|x+1\right|\ge x+1\end{matrix}\right.\)

\(\Rightarrow\left|x-2001\right|+\left|x+1\right|\ge\left(2001-x\right)+\left(x+1\right)\)

\(\Rightarrow A\ge2001-x+x+1\)

\(\Rightarrow A\ge2002\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left|2001-x\right|=2001-x\\\left|x+1\right|=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2001-x\ge0\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge-1\end{matrix}\right.\)

\(\Leftrightarrow-1\le x\le2001\)

Vậy giá trị nhỏ nhất của A là 2002 \(\Leftrightarrow-1\le x\le2001\)

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra