K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBDH vuông tại H và ΔBEH vuông tại H có 

BH chung

DH=EH(H là trung điểm của DE)

Do đó: ΔBDH=ΔBEH(hai cạnh góc vuông)

Suy ra: \(\widehat{BDH}=\widehat{BEH}\)(hai góc tương ứng)

mà \(\widehat{BDH}=\widehat{ADC}\)(hai góc đối đỉnh)

và \(\widehat{CEB}=\widehat{BEH}\)

nên \(\widehat{CEB}=\widehat{ADC}\)(đpcm)

Ta có: ΔBDH=ΔBEH(cmt)

nên \(\widehat{DBH}=\widehat{EBH}\)(hai góc tương ứng)(1)

Xét ΔADC vuông tại A và ΔHDB vuông tại H có 

\(\widehat{ADC}=\widehat{HDB}\)(hai góc đối đỉnh)

Do đó: ΔADC\(\sim\)ΔHDB(g-g)

Suy ra: \(\widehat{ACD}=\widehat{HBD}\)(hai góc tương ứng)(2)

Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{ACD}\)(Đpcm)

13 tháng 7 2021

undefined

a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE

31 tháng 7 2015

a,△BED có H là trung điểm của DE và BH ┴ DE 
=> △BED cân ở B 
=> ∠BED = ∠BDE 
∠BDE = ∠ADC (đối đỉnh) 
=> ∠BED = ∠ADC 
△BED cân ở B => BH là phân giác của ∠EBD 
=> ∠EHB = ∠DBH 
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD 
=> ∠EBH = ∠ACD 
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB) 
= 90⁰ - ∠CBH 
=> ∠EHB + ∠CBH = 90⁰ 
=> BE ┴ BC 
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D} 
=> D là trực tâm của △FBC 
=> FD ┴ BC 
BE ┴ BC 
=> FD//BE