K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

cần giúp

28 tháng 10 2018

A = \(x^2+9y^2+25+6xy-30y-10x-6xy+26\)

   = \(x^2-10x+25+9y^2-30y+25+1\)

   = \(\left(x-5\right)^2+\left(3y-5\right)^2+1\)

Có : \(\left(x-5\right)^2\ge0\forall x;\left(3y-5\right)^2\ge0\forall y\)

\(\Rightarrow A\ge1\)

Vậy GTNN của A là 1 \(\Leftrightarrow\hept{\begin{cases}x-5=0\\3y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}}\)

6 tháng 9 2016

Trả lời đc câu b chưa bạn

6 tháng 9 2016

nếu rồi cho mình lời giải nha

24 tháng 11 2021

\(A=x^2-8x+5\)

\(=\left(x^2-8x+16\right)-11\)

\(=\left(x-4\right)^2-11\)

\(=-11+\left(x-4\right)^2\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ -11

Min A=-11 ⇔\(x-4=0\)

                 ⇔\(x=4\)

26 tháng 8 2017

Ta có:\(A=x^2-4x\)

           \(A=x^2-4x+4-4\)

          \(A=\left(x-2\right)^2-4\le-4\)

Dấu = xảy ra khi x - 2 = 0 ; x = 2

   Vậy Min A = - 4 khi x = 2

Ta có:\(B=x^2+x+1\)

           \(B=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

          \(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

                   Dấu = xảy ra khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy MIn B = 3/4 khi x=-1/2

26 tháng 8 2017

Ta có:\(C=\left(x+3y-5\right)^2-6xy+26\)

         \(C=x^2+9y^2+25+6xy-10x-30y-6xy+26\)

         \(C=x^2+9y^2-10x-30y+51\)

        \(C=x^2-10x+25+9y^2-30y+25+1\)

         \(C=\left(x-5\right)^2+\left(3y-5\right)^2+1\ge1\)

Dấu = xảy ra khi \(x-5=0;3y-5=0\Rightarrow x=5;y=\frac{5}{3}\)

                   Vậy Min C = 1 khi x=5;y=5/3