K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Rối mắt nhễ!?

a, 

( 18.38 + 16.76 - 1 ) = ( 39 x 19 + 64 x 20 - 65 )x

=> ( 684 + 1216 - 1) = ( 741 + 1280 - 65 )x 

=> 1899                    = 1956x

=> 1956x                   = 1899

=>          x                  = 1899/1956

=>          x                  = 633/652

Tương tự tiếp...  

24 tháng 8 2017

tương tự là sao vẫn chưa hết hay là phần B

21 tháng 10 2016

18 x 38 + 16 x 38 x 2 -1 = (18 x 2 x 19 + 32 x 2 x 20 - 32 x 2 - 1) x X

X = (18 x 38 + 32 x 38 - 1) : (18 x 38 + 32 x 38 - 1)

X = 1

25 tháng 6 2019

+) Ta có:

A = 2007 x 2009 = 2007 x 2008 + 2007 

B = 2008 x 2008 = 2007 x 2008 + 2008

Do 2007 < 2008 => 2007 x 2008 + 2007 < 2007 x 2008 + 2008

=> A < B

+) Ta có: 

A = 2006 x 2010 = 2006 x 2008 + 2006 x 2

B = 2008 x 2008 = 2008 x 2006 + 2008 x 2

Do 2006 x 2 < 2008 x 2 => 2006 x 2008 + 2006 x 2 < 2008 x 2006 + 2008 x 2

=> A < B

25 tháng 6 2019

B=2008 x 2008 = (2007+1) x (2009-1)=2007 x 2009 +2009-2007-1=2007 x 2009+1 >A=2007 x 2009

B=2008 x 2008 = (2006+2) x (2010-2)=2007 x 2009 +2009 x 2-2007 x 2-4=2007 x 2009+4 >A=2006 x 2010

4 tháng 7 2017

 n thỏa mãn vs mọi giá trị

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

12 tháng 11 2022

nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả

22 tháng 11 2017

Theo TCDTSBN ta có:

\(\frac{x1}{x2}=\frac{x2}{x3}=....=\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\)

Ta có: \(\frac{x1}{x2}=\frac{x1+x2+...+x2008}{x2+x3+....+x2009}\left(1\right)\)

\(\frac{x2}{x3}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2\right)\)

............

\(\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2008\right)\)

Nhân (1),(2),....(2008) vế với vế:

\(\frac{x1}{x2}\cdot\frac{x2}{x3}\cdot\cdot\cdot\cdot\frac{x2008}{x2009}=\frac{x1}{x2009}=\left(\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\right)^{2008}\)

Vậy...

22 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=...=\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

=> \(\frac{x_1}{x_2}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

\(\frac{x_2}{x_3}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

\(\frac{x_3}{x_4}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

..........

\(\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

Như vậy nhân các vế lại ta có \(\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.....\frac{x_{2008}}{x_{2009}}=\frac{x_1.x_2.x_3...x_{2008}}{x_2.x_3.x_4....x_{2009}}=\frac{x_1}{x_{2009}}\) (đpcm)

8 tháng 10 2016

x2008 = x5

=> x = 0 hoặc 1