Chứng tỏ B=x2+x+5 lớn hơn hoặc bằng 5 với x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x, y, z thuộc [0;2] và x+ y+ z =3
Chứng minh rằng: x^2+ y^2+ z^2 bé hơn hoặc bằng 5
Ta có:
(2−x)(2−y)(2−z)≥0(2−x)(2−y)(2−z)≥0
⇔8−4(x+y+z)+2(xy+yz+zx)≥xyz⇔8−4(x+y+z)+2(xy+yz+zx)≥xyz
⇔2(xy+yz+zx)≥xyz+4≥4⇔2(xy+yz+zx)≥xyz+4≥4
⇒x2+y2+z2=(x+y+z)2−2(xy+yz+zx)≤9−4=5⇒x2+y2+z2=(x+y+z)2−2(xy+yz+zx)≤9−4=5
Dấu = xảy ra⇔(x,y,z)=(2;1;0)⇔(x,y,z)=(2;1;0) và các hoán vị
lal + lbl >= la + bl
<=> a2 + 2lallbl + b2 >= a2 + 2ab + b2
<=> lallbl >= ab (đúng với mọi a; b thuộc Z)
A)x€{-6;-5;-4;-3;-2}
B)x€{-2;-1;0;1;2}
C)x€{-1;0;1;2;3;4;5;6}
D)x€{-5;-4;-3;-2;-1;0;1;2;3;4;5;6}