K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

 Heo ơi

Heo

24 tháng 4 2018

\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)

\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)

\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)

\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)

24 tháng 4 2018

Ta có: \(\frac{1}{1x2}\)\(\frac{1}{2x3}\)\(\frac{1}{3x4}\)\(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)

         = \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

        = 1 - \(\frac{1}{10}\)

        =  \(\frac{9}{10}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

19 tháng 4 2017

a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8

=1.2.3.4...8(9-1-8)

=1.2.3.4...8.0

=0

b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)

=32.236/235.9=32.236/235.32=2

c)70.(131313/565656+131313/727272+131313/909090

=70.(13/56+13/72+13/90)

=70.39/70=39

d)1/4.9+1/9.14+1/14.19+...+1/64.69

=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.

=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)

=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)

=1/4.(1/4-1/69)

=1/4.65/276=65/1104

~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~

19 tháng 4 2017

nhìu thế này sao mà làm nổi

6 tháng 8 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{x\left(x+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(=1-\frac{1}{x+1}\)

\(=\frac{x+1-1}{x+1}=\frac{x}{x+1}\)

6 tháng 8 2016

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x.\left(x+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(=1-\frac{1}{x+1}\)

\(=\frac{x+1}{x+1}-\frac{1}{x+1}\)

\(=\frac{x}{x+1}\)

9 tháng 11 2014

\(\frac{1}{8}=12,5\%\)  ;  \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\) 

Thay vào trên mà tính.

\(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)  

29 tháng 4 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)