Cho tam giác DEF, biết góc D = 90 độ, góc E = 60 độ, EF = 8cm
a, Tính độ dài cạnh DE; b, Kẻ đường cao DH và phân giác DI của góc D ( H; I € EF). Tính HI
Giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) áp dụng định lí pytago vào tam giác DEF ta được:
EF2=DE2+DF2
=92+122
=225
=>EF=15(cm)
2)ta có \(DK=\frac{EF}{2}=\frac{15}{2}=7,5\left(cm\right)\)(định lí : trong t/g vuông vuông đường trung tuyến ứng với cạnh huyền bằng nưa độ dài cạnh huyền)
3)ta có: DE<DF<EF(9cm <12cm <15cm )
=>góc DFE<góc DEF< góc EDF(Định lí)
Giải
Vì\(\Delta ABC~\Delta DEF\) nên ta có:
\(\widehat{D}=\widehat{A}=45^o\)
\(\widehat{E}=\widehat{B}=55^o\)
\(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)
Xét\(\Delta ABC~\Delta DEF\) có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)
\(DF=\frac{AC.3}{2}=10,5\)
#hoktot<3#