phân tích đa thức thành nhân tử = pp bổ sung hằng đẳng thức:
\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\frac{9}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
a) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
b) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
a, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
b, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\)
\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
Chúc bạn học tốt!!!
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)
\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)
\(1,\)
\(x^2+x-12\)
\(=x^2-3x+4x-12\)
\(=x\left(x-3\right)+4\left(x-3\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
\(2,\)
\(x^2-9x+20\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-5\right)\left(x-4\right)\)
\(3,\)
\(x^2+x-20\)
\(=x^2-4x+5x-20\)
\(=x\left(x-4\right)+5\left(x-4\right)\)
\(=\left(x+5\right)\left(x-4\right)\)
c ) \(x^2-7x+12\)
\(=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
d ) \(x^2+7x+12\)
\(=\left(x^2+3x\right)+\left(4x+12\right)\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+4\right)\left(x+3\right)\)
a ) \(x^2-5x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b )\(x^2+5x+6\)
\(=\left(x^2+2x\right)+\left(3x+6\right)\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
a.x^2 - 5x + 6
=x2-2x-3x+6
=x(x-2)-3(x-2)
=(x-3)(x-2)
b.x^2 + 5x + 6
=x2+3x+2x+6
=x(x+3)+2(x+3)
=(x+2)(x+3)
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
x2 + x -12 = x2 + 4x - 3x - 12 = x(x+4) - 3(x+4) = (x+4)(x-3)
\(x^2+x-12\)
\(=x^2+x+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\left(x+\frac{1}{2}-\frac{7}{2}\right)\left(x+\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-3\right)\left(x+4\right)\)
x2-2.x.1/2 +(1/2)2-9/4
=(x-1/2)2-9/4
=(x-1/2)2-(3/2)2
=(x-1/2-3/2).(x-1/2+3/2)
=(x-2)(x+1)