Thay 1 chữ số bằng một số thích hợp,những chữ giống nhau được thay bằng những chữ số giống nhau để được phép tính:
a00b+b00a=7cc2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 3 thì chắc làm theo thế này!
c + c + c = 9 hoặc 19 ( loại )
=> c = 3
b + b = 8 hoặc 18
=> b = 4 hoặc b = 9
=> a = 7 hoặc a = 6
Thử lại với a = 7; b = 4 ; c = 3 ta có:
743 + 43 + 3 = 789 ( thỏa mãn )
Thử lại với a = 6; b = 9; c = 3, ta có:
693 + 93 + 3 = 789 ( thỏa mãn )
Vậy a = 7; b = 4; c = 3 hoặc a = 6; b = 9; c = 3.
Khi ta dặt tính theo cột dọc. ta thấy: c + c + c = 9
Vậy c = 3
b + b = 8
Vậy b = 4
a = 7
Đ/S: a = 7
b = 4
c = 3
- Vì A≠G mà chữ số hàng chục của tổng là 0 nên phép cộng có nhớ 1 sang hàng trăm nên ở hàng trăm: H + N + 1 (nhớ) = 10; nhớ 1 sang hàng nghìn. Do đó H + N = 10 - 1 = 9.
- Phép cộng ở hàng nghìn: N + 1 (nhớ) = 2 nên N = 2 - 1 = 1.
Thay N = 1 ta có: H + 1 = 9 nên H = 9 - 1 = 8
- Phép cộng ở hàng đơn vị: Có 2 trường hợp xảy ra:
* Trường hợp 1: Phép cộng ở hàng đơn vị không nhớ sang hàng chục.
Khi đó: M + O = 0 và A + G = 10.
Ta có bảng: (Lưu ý 4 chữ M, O, A, G phải khác nhau và khác 1; 8)
* Trường hợp 2: Phép cộng ở hàng đơn vị có nhớ 1 sang hàng chục.
Khi đó: M + O = 12 và A + G = 9. Ta có bảng:
Vậy bài toán có 24 đáp số như trên.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.