Cho hình thang cân ABCD, đáy lớn AD. Gọi M, N lần lượt là trung điểm của AB, CD. Kẻ đường cao CH
a) Chứng minh AH=(AD+BC)/2 và DH=(AD-BC)/2
b) giả sử AC vuông góc tại BD , CH=6cm. Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko đúng đâu chị ạ:)
a).tam giác ADE có: {DMlà đường trung tuyến của ΔADEANlà đường trung tuyến của ΔADE{DMlà đường trung tuyến của ΔADEANlà đường trung tuyến của ΔADE nên I là trọng tâm của tam giác ADE
⇒⇒EI cũng là đường trung tuyến của tam giác ADE
⇒⇒AF=FD
b). ta có ⎧⎩⎨⎪⎪AH⊥DCBO⊥DCAB//DC{AH⊥DCBO⊥DCAB//DCnên tứ giác ABOH là hình chữ nhật.⇒AB=HO⇒AB=HO
hai tam giác vuông ADH và COB có: {DA=BCADHˆ=BCOˆ{DA=BCADH^=BCO^ nên chúng bằng nhau (ch-gn)
⇒DH=OC⇒DH=OC
ta có: FE=AB+CD2=AB+HO+DH+OC2=2HO+2OC2=HO+OC=HCFE=AB+CD2=AB+HO+DH+OC2=2HO+2OC2=HO+OC=HC
đồng thời IEFE=23IEFE=23(I là trong tâm tam giác ADE)
nên EIHC=23EIHC=23 hay EI=23HC
P.s:Mới lớp 6 thôi mak :)
???????????????????????????????
???????????????
no biet