\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}và,y-x=4\)
Làm ơn giúp hộ mình với mình cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{6}=2\Rightarrow y=12\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 8
y = 12
z = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50
\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)
=> x = 2.4 = 8
=> y = 2.6 = 12
=> z = 2.15 = 30
Vậy x = 8;y = 12;z = 30.
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
\(a,\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow x-1=24\)
\(\Rightarrow x=25\)
\(b,-\frac{x}{4}=-\frac{9}{x}\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(c,\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x^2+x=72\)
\(\Leftrightarrow x\left(x+1\right)=72..\)
ấn nhầm: lm tiếp nhé!
\(x\left(x+1\right)=72\)
\(\text{Mà x thuộc Z nên }x\left(x+1\right)=8\left(8+1\right)\)
\(\Leftrightarrow x=8\)
Ta có :
\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
\(\Rightarrow\begin{cases}x=12\\y=8\\z=10\end{cases}\)
\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)
\(\Leftrightarrow\)\(\frac{x}{6}=\frac{y}{4};\frac{z}{5}=\frac{y}{4}\)
\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
=>\(\begin{cases}x=12\\y=8\\z=10\end{cases}\)
Ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) và \(y-x=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
\(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.4=2\\\frac{y}{8}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.8=4\\\frac{z}{15}=\frac{1}{2}\Rightarrow z=\frac{1}{2}.15=7,5\end{cases}}\)
Vậy \(x=2;y=4;z=7,5\)