K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017
Mk gửi nhầm nha
27 tháng 4 2023

loading...  

27 tháng 4 2023

Thaknks

 

a) Ta có: \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)

\(=\left(2+\sqrt{3}-\sqrt{7}-2\right):\dfrac{\left(\sqrt{7}-\sqrt{3}\right)}{2}\)

\(=\dfrac{-\left(\sqrt{7}-\sqrt{3}\right)}{1}\cdot\dfrac{2}{\sqrt{7}-\sqrt{3}}\)

=-2

b) Ta có: \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)

\(=\left(-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)

\(=\left(-\sqrt{x}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)

\(=\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+2\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)

17 tháng 8 2018

đặt \(\sqrt[3]{2-x}=a;\sqrt[3]{7+x}=b\rightarrow a^3+b^3=9\)

thay vào pt ta đc

\(a^2+b^2-ab=\dfrac{\left(a^3+b^3\right)}{3}\)

\(a^2+b^2-ab=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{3}\)

do \(a^2+b^2-ab>0\)nên

a+b=3

\(\rightarrow\sqrt[3]{2-x}+\sqrt[3]{7+x}=3\)

\(\left(\sqrt[3]{2-x}+\sqrt[3]{7+x}\right)^3=27\)

\(2=\sqrt[3]{\left(7+x\right)\left(2-x\right)}\)

0=6-5x-x^2 đến đấy khá đơn giản rồi nhỉ

(x-1)(x+6)=0

vậy pt có nghiệm x=1;x=-6

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Đặt \(\sqrt[3]{2-x}=a; \sqrt[3]{7+x}=b(*)\). Ta có hệ phương trình:

\(\left\{\begin{matrix} a^3+b^3=9\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (a+b)(a^2-ab+b^2)=9\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-3ab=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Theo định lý Viete đảo thì $a,b$ là nghiệm của pt:

\(x^2-3x+2=0\), do đó \((a,b)=(1,2)\) hoặc \((a,b)=(2,1)\)

Thay vào $(*)$ suy ra $x=1$ hoặc $x=-6$

10 tháng 6 2019

Đặt \(\sqrt[3]{2-x}=a,\sqrt[3]{7+x}=b\)

=> \(\hept{\begin{cases}a^3+b^3=9\\a^2+b^2-ab=3\end{cases}}\)

<=> \(\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)=9\\a^2+b^2-ab=3\end{cases}}\)

=> \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\)=> \(\orbr{\begin{cases}a=1,b=2\\a=2,b=1\end{cases}}\)

=> \(x=1,x=-6\)

Vậy \(S=\left\{-6,1\right\}\)