Cho tam giác ABC cân tại A. Đường cao AH. Lấy điểm M nằm giữa A và H. So sánh MC và AC
Mk đang cần gấp, giúp mk vs nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Cm: Do Bx nằm giữa tia BA và BC nên \(\widehat{ABx}+\widehat{xBC}=\widehat{B}\)
=> \(\widehat{xBC}< \widehat{B}\) hay \(\widehat{DBC}< \widehat{B}\)(1)
D là điểm nằm ngoài t/giác ABC => tia CA nằm giữa CB và CD
=> \(\widehat{BCA}+\widehat{ACD}=\widehat{BCD}\)
=> \(\widehat{BCA}< \widehat{BCD}\) (2)
Mà \(\widehat{B}=\widehat{BCA}\) (Vì t/giác ABC cân tại A) (3)
Từ (1); (2); (3) => \(\widehat{DBC}< \widehat{BCD}\)
=> DC < BD (quan hệ giữa cạnh và góc đối diện)
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là trung trựccủaCB
b: SỬa đề; BM=CM
AH là trung trực của BC
=>M nằm trên đường trung trực của BC
=>MB=MC
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AB/2=AM
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AC/2=AN
Xét ΔNAM và ΔNHM có
NA=NH
MA=MH
NM chung
Do đó: ΔNAM=ΔNHM
Suy ra: \(\widehat{NAM}=\widehat{NHM}=90^0\)
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82
\(\Rightarrow\)AC = 8 cm
theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )
b) Xét tam giác DAC và tam giác BAC có :
AB = AD ( gt )
\(\widehat{DAC}=\widehat{BAC}=90^o\)
AC ( cạnh chung )
\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )
\(\Rightarrow\)DC = BC
\(\Rightarrow\)tam giác DCB cân tại C
c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC
\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm
d) Nối A với Q.
Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)
Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)
\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA
Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M
Suy ra : 3 điểm B,M,Q thẳng hàng
áp dụng định lí py-ta-go ta có
AB^2+AC^2=BC
=6^2+AC^2=10^2
12+AC^2=20
SUY RA AC=20-12=8
CĂN BẬC 2 CỦA 8 LÀ 4
SUY RA AC=4
GÓC B <C<A
Dùng định lý Pitago để chứng minh nhé
trong tam giác vuông AHC ta có:
\(AC^2=AH^2+HC^2\)(1)
Trong tam giác vuông MHC, ta có:
\(MC^2=MH^2+HC^2\)(2)
tỪ (1) VÀ (2) =>
\(AC^2=AH^2+HC^2\)
\(MC^2=MH^2+HC^2\)
Mà ta có: HC=HC và AH<MH vì M là điểm giữa và AM+MH=AH
=> \(AC^2>MC^2\Rightarrow AC>MC\)