Cho hình vuông ABCD cạnh a. Gọi M là trung điểm AB và N là trung điểm BC. AN và CM cắt nhau tại O. Tính BO.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
1. Lớp 8 chưa học tứ giác nội tiếp nên có thể CM như sau:
Xét tam giác $KAB$ và $KCH$ có:
$\widehat{K}$ chung
$\widehat{KBA}=\widehat{KHC}=90^0$
$\Rightarrow \triangle KAB\sim \triangle KCH$ (g.g)
$\Rightarrow \frac{KA}{KC}=\frac{KB}{KH}\Rightarrow KA.KH=KB.KC$
Xét tam giác $KAC$ có $AB,CH$ là 2 đường cao giao nhau tại $M$ nên $M$ là trực tâm tam giác $KAC$
$\Rightarrow KM\perp AC$. Mà $AC\perp BD$ nên $KM\parallel BD$.
2.
$OE\parallel DC$ nên theo định lý Talet:
$\frac{OF}{FC}=\frac{OE}{DC}$
Mà $OE=OC$ (như bạn Phan Linh Nhi đã cm) nên $\frac{OF}{FC}=\frac{OC}{DC}=\frac{\sqrt{2}}{2}$ (do $ODC$ là tam giác vuông cân tại $O$)
tự vẽ hình nha
lấy Q trung điểm CD
kẻ AQ =>AQ song song CM
cm AQ vuông góc DN {tự cm}
tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ
tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông
tick nha
Tam giác L BCM = tam giác L CDN (2 cạnh góc L = nhau)
=> CDN^ = BCM^
lại có:
BMC^ = DCI^ (so le trong)
=> CID^ =CBM^ = 1v (xét 2 tam giác CDI và CBM)
gọi P là trung điểm của CD và Q là giao điểm của AP và DN
ta có tứ giác AMCP là hình bình hành vì có AM//=CP
=> AP // CM
=> AP L DN
xét tam giác DCI có P là trung điểm của CD và PQ // CI nên Q là trung điểm của DI
vậy AQ là đường cao vùa là trung tuyến của tam giác ADI => tam giác ADI cân tại A => AD=AI
~~~~~~~~~~~~~~~~~~~~ ai đi qua nhớ để lại ~~~~~~~~~~~~~~~~~~
Kéo dài BO cắt AC tại H.Nhận thấy O là trọng tâm tam giác ABC>>>BO=2/3BH.Mà BH dễ tính do tam giác ABC vuông cân.
>>>Tính được BO(nhớ k nha)