phân tích đa thức thành nhân tử: (x^2+5x)^2+1õ^2+5x+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24\\ =\left[\left(x^2+5x\right)^2-6\left(x^2+5x\right)\right]+\left[4\left(x^2+5x\right)-24\right]\\ =\left(x^2+5x\right)\left(x^2+5x-6\right)+4\left(x^2+5x-6\right)\\ =\left(x^2+5x-6\right)\left(x^2+5x+4\right)\\ =\left(x^2-x+6x-6\right)\left(x^2+4x+x+4\right)\\ =\left[x\left(x-1\right)+6\left(x-1\right)\right]+\left[x\left(x+4\right)+\left(x+4\right)\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4\right)\left(x+6\right)\)
đặt a=x^2-5x
(x^2-5x)^2+10(x^2-5x+24)
=a^2+10(a+24)
=a^2+10a+24
=a^2+6a+4a+24
=a(a+6)+4(a+6)
=(a+6)(a+4)
=(x^2-5x+6)(x^2-5x+4)
=[x^2-3x-2x+6][x^2-x-4x+4]
=[x(x-3)-2(x-3)][x(x-1)+4(x-1)]
=(x-3)(x-2)(x-1)(x+4)
\(x^3+5x^2+5x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+6x+1\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
\(=x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}-\dfrac{25}{4}-2\\ =\left(x+\dfrac{5}{2}\right)^2-\dfrac{33}{4}\\ =\left(x+\dfrac{5}{2}-\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{5}{2}+\dfrac{\sqrt{33}}{2}\right)\)
\(A=5x^3-125x=5x\left(x-5\right)\left(x+5\right)\)
\(B=x^3-8+\left(x-2\right)\left(5x+4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4+5x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+4\right)\)
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)