Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 + 8y và y2 + 8x đều là số chính phương.
mn giúp với nha
mình tìm đc (1;1);(3;5);(11;21);(5;3);(21;11) nhưng ko biết phải giải thế nào mn giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
\(x^3+y^3-9xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-3x^2y-3xy^2-9xy=0\)
\(\Leftrightarrow\left(x+y\right)^3+27-3xy\left(x+y+3\right)=27\)
\(\Leftrightarrow\left(x+y+3\right)\left[\left(x+y\right)^2-3\left(x+y\right)+9\right]-3xy\left(x+y+3\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(x^2+2xy+y^2-3x-3y+9-3xy\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(x^2-xy+y^2-3x-3y+9\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(2x^2-2xy+2y^2-6x-6y+18\right)-54=0\)
\(\Leftrightarrow\left(x+y+3\right)\left[\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\right]=54\)
Do x, y > 0 => x + y + 3 > 3
Mà x, y nguyên dương => \(\left\{{}\begin{matrix}x+y+3\in Z^+\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\in Z^+\end{matrix}\right.\)
Và \(\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2⋮2\)
TH1: \(\left\{{}\begin{matrix}x+y+3=9\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-xy+y^2-3x-3y=-6\end{matrix}\right.\)
\(\Leftrightarrow x^2-x\left(6-x\right)+\left(6-x\right)^2-3x-3\left(6-x\right)=-6\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\Leftrightarrow y=2\left(tm\right)\\x=2\left(tm\right)\Leftrightarrow y=4\left(tm\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y+3=27\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=24\\x^2-xy+y^2-3x-3y=-8\end{matrix}\right.\)
\(\Leftrightarrow x^2-x\left(24-x\right)+\left(24-x\right)^2-3x-3\left(24-x\right)=-8\)
\(\Leftrightarrow3x^2-72x+512=0\) (vô nghiệm)
KL: Vậy phương trình có tập nghiệm (x;y) = [(2;4);(4;2)]
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha
Sao câu dễ vậy mà không ai trả lời đc
Giả sử x lớn hơn y
Thấy x2 + 8y lớn hơn x2 và nhỏ hơn x2 + 8x nhỏ hơn (x + 4)2 suy ra nó nằm giữa 2 cái bình phương vừa nêu. Áp dụn chẵn lẻ loại 2 th suy ra 2y = x + 1 thay vào y2 + 8x là ra thôi. Thầy mình ra bài này thấy dễ quá định lên mạng chép mà mấy thằng thông minh không rảnh mà lên mạng. Với cả thay vào y2 + 8x kẹp tiếp bạn nhé rồi xét TH. Xong 😅