cho a b c là cạnh của một tam giác sao cho: a^2.(b-c) +b^2.(c-a) +c^2.(a-c)=0.
CMR: tam giác abc cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Hình tự vẽ
a ) Ta có : BM = AB ( theo đề bài )
=> Tam giác AMB cân tại B
b ) Do tam giác ABC vuông cân tại A => AB = AC
mà CN = AB => CN cũng = AC
=> Tam giác ANC cân tại C
c ) Tam giác j cân tại A ???
Bài 2 : Hình bn tự vẽ nhé
a ) AH \(\perp\)BC => \(\Delta AHB\)và \(\Delta AHC\)là hai tam giác vuông
Do tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét hai tam giác vuông : \(\Delta AHB\)và \(\Delta AHC\)có :
AB = AC ( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( cmt )
nên tam giác AHB = tam giác AHC ( cạnh huyền - góc nhọn )
b ) Do tam giác AHB = tam giác AHC => HB = HC ( hai cạnh tương ứng )
c ) Do tam giác AHB = tam giác AHC => \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia p/g của \(\widehat{BAC}\)
\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)=b^2\)
Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
\(\left(b+c-a\right)\left(c+a-b\right)\le c^2\)
Nhân vế với vế:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi \(a=b=c\)