Cho tam giác ABC vuông tại C biết góc B= 2 lần góc A.
a) Tính góc A và góc B.
b) Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Chứng minh AD=AB. Trên AD lấy điểm M, trên AB lấy điểm N sao cho AM=AN. Chứng minh CM=CN.
c) Gọi I là giao điểm của AC và MN. Chứng minh IM=IN.
d) Chứng minh MN//BD.
Vẽ hình giúp mk lun nhé! Thanks
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
Bạn làm lun cho mk phần d đc k