Cho đường tròn (O) đường kính AB.Lấy một điểm M trên đường tròn, tiếp tuyến với đường tròn tại M cắt các tiếp tuyến tại A và B lần lượt tại C và D. Các đường thẳng AD và BC cắt nhau tại N.
a/ C/m CD=AC+BD
b/ C/m MN // AC
c/ C/m CD.MN=CM.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DM là tiếp tuyến có M là tiếp điểm
Do đó: DB=DM
Ta có: MC+MD=DC
mà MC=CA
và DM=DB
nên AC+DB=CD
1: Xét (O) có
DM là tiếp tuyến
DA là tiếp tuyến
Do đó: DM=DA và OD là tia phân giác của góc MOA(1)
Xét (O) có
EM là tiếp tuyến
EB là tiếp tuyến
Do đó: EM=EB và OE là tia phân giác của góc MOB(2)
Ta có: DE=DM+ME
nên DE=AD+BE
2: Từ (1) và (2) suy ra \(\widehat{DOE}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔDOE vuông tại O
Bổ sung đề: Vẽ tiếp tuyến tại M của đường tròn cắt các tiếp tuyến tại A,B lần lượt tại C và D
a) Xét (O) có
CA là tiếp tuyến có A là tiếp điểm(gt)
CM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: CA=CM(Tính chất hai tiếp tuyến cắt nhau của đường tròn)
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm(gt)
DM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau của đường tròn)
Ta có: CM+DM=CD(M nằm giữa C và D)
mà CM=CA(cmt)
và MD=MB(cmt)
nên CA+DB=CD
hay CD-AC=BD(đpcm)