Tìm các giá trị nguyên của biến để phân thức sau nhạn giá trị nguyên;
\(\frac{2\left(x+1\right)}{x^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3}{x^2+x+1}\) nhận giá trị nguyên \(\Leftrightarrow x^2+x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Mà \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Nên \(x^2+x+1=\left\{1;3\right\}\)
TH1: \(x^2+x+1=1\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)
TH2\(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\left(TM\right)\)
Vậy \(x\in\left\{-2;-1;1;0\right\}\)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
Để phân số là số nguyên thì \(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;131;-131\right\}\)
hay \(x\in\left\{5;3;135;-127\right\}\)
để x có giá trị nguyên thì 6/(x-3) phải có giá trị nguyên
=> 6 chia hết cho (x-3)
=> (x-3) thuộc ước của 6
ta có bảng sau
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
vậy x thuộc các kết quả trên thì biểu thức mang giá trị nguyên
Vì 3 / (x + 2) là một số nguyên nên 3 ⋮ (x + 2) và x ≠ - 2
Suy ra: x + 2 ∈ Ư(3) = {- 3; - 1; 1; 3}
Ta có: x + 2 = - 3 ⇒ x = - 5; x + 2= - 1 ⇒ x = - 3
x + 2 = 1 ⇒ x = -1; x + 2 = 3 ⇒ x = 1
Vậy với x ∈ {-5; -3; -1; 1} thì 3 / (x + 2) là một số nguyên.
\(A=\frac{2\left(x+1\right)}{x^3+1}=\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{x^2-x+1}\)
Để A nhận GT nguyên \(\Leftrightarrow x^2-x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\) nên
\(\orbr{\begin{cases}x^2-x+1=0\\x^2-x+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)x=0\\x-\frac{1}{2}=+-\sqrt{\frac{5}{4}}\left(l\right)\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=\left\{0;1\right\}\)