Cho tam giác ABC cân tại A, điểm M nằm trong tam giác sao cho MB < MC. Chứng minh rằng góc AMB > góc AMC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CH
Cô Hoàng Huyền
Admin
VIP
26 tháng 2 2018
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
CH
Cô Hoàng Huyền
Admin
VIP
26 tháng 2 2018
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
CH
Cô Hoàng Huyền
Admin
VIP
26 tháng 2 2018
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
\(\widehat{A}_1=\widehat{A}_2\)
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>\(\widehat{M}_2=\widehat{N}_2\)(1)
Xét tam giác CNM có NC<MC
=>\(\widehat{M}_3< \widehat{N}_3\)(2)
Từ (1),(2)
=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)
=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)
=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho ˆA1=ˆA2A^1=A^2và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
ˆA1=ˆA2A^1=A^2
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>ˆM1=ˆANCM^1=ANC^;BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>ˆM2=ˆN2M^2=N^2(1)
Xét tam giác CNM có NC<MC
=>ˆM3<ˆN3M^3<N^3(2)
Từ (1),(2)
=>ˆM2+ˆM3<ˆN2+ˆN3M^2+M^3<N^2+N^3
=>ˆAMC<ˆANCAMC^<ANC^=>ˆANC>ˆAMCANC^>AMC^
=>ˆAMB>ˆAMCAMB^>AMC^(ˆANC=ˆAMBANC^=AMB^)