chứng tỏ rằng : \(\frac{\text{1}}{2}\) + \(\frac{\text{1}}{3}\) + \(\frac{\text{1}}{4}\) + ..... + \(\frac{\text{1}}{63}\) > 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại đề : Chứng tỏ rằng : A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)
bài làm
A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}\)
A = \(\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2014!}< 1\)
\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\)
Do đó: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\)
\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\)
\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
Đặt \(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(\Rightarrow2^2A=2^2.\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow4A=1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\)
\(\Rightarrow4A+A=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow5A=1-\frac{1}{2^{2004}}\)
Vì \(1-\frac{1}{2^{2004}}< 1.\)
\(\Rightarrow5A< 1\)
\(\Rightarrow A< \frac{1}{5}=0,2\)
\(\Rightarrow A< 0,2\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có:
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)
Chúc bạn học tốt!
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
Giải :
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
~~Học tốt~~
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
Đpcm