Cho tứ giác ABCD, hai đường chéo vuông góc với nhau tại O. Biết BC=15cm, CD=24cm và AD=20cm. Tính độ dài cạnh AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tứ giác ABCD, 2 đường chéo vuông góc tại O. Biết BC=15cm, CD=24cm và AD=20cm. Tính độ dài AB
Đáp Số hình như là 7 cm còn cách giải thì ???
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
a: Xét ΔDAB vuông tại A có
\(DB^2=AB^2+AD^2\)
hay DB=25(cm)
Xét ΔDAB vuông tại A có AO là đường cao ứng với cạnh huyền DB
nên \(\left\{{}\begin{matrix}AD^2=DO\cdot DB\\AB^2=BO\cdot BD\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DO=16\left(cm\right)\\OB=9\left(cm\right)\end{matrix}\right.\)
\(a,BD=\sqrt{AB^2+AD^2}=25\left(cm\right)\left(pytago\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AD^2=OD\cdot BD\\AB^2=OB\cdot BD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OD=\dfrac{AD^2}{BD}=16\left(cm\right)\\OB=\dfrac{AB^2}{BD}=9\left(cm\right)\end{matrix}\right.\)
\(b,\) Áp dụng HTL:
\(\left\{{}\begin{matrix}AO^2=DO\cdot OB=144\\AD^2=AO\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AO=12\left(cm\right)\\AC=\dfrac{AD^2}{AO}=\dfrac{100}{3}\left(cm\right)\end{matrix}\right.\)
\(c,DC=\sqrt{AD^2+AC^2}=\dfrac{20\sqrt{34}}{3}\left(cm\right)\\ S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=10\left(\dfrac{20\sqrt{34}}{3}+15\right)=\dfrac{450+200\sqrt{34}}{3}\left(cm^2\right)\)
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I
xét tam giác BOC vuông tại O có: OB^2 +OC^2 =BC^2 (ĐL Py-ta-go)
=> OB^2= BC^2 -OC^2=15^2 -OC^2 =225-OC^2 (1)
xét tam giác DOC vuông tại O có: OC^2 +OD^2=Dc^2
=.> OD^2=DC^2-OC^2=24^2 -OC^2=576- OC^2 (2)
xét tam goác AOD vuông tại O có: OD^2+OA^2=AD^2
=> OA^2= AD^2-OD^2=20^2 -OD^2 (3)
thay (2) vào (3) ta đc: OA^2 = 400-576+ OC^2=OC^2-176 (4)
Xét tam giác AOB vuông tại O có : OA^2+OB^2=AB^2 (5)
thay (1),(4) vào (5) ta đc: AB^2=OC^2-176 +225-OC^2=49
=>AB=7(vì AB>0)
đúng thì k mk nha bn!