Cho tam giác ABC có góc A=90 độ, AB=5dm, BC=13dm kẻ trung tuyến AM gọi I là trung điểm của AM, BI cắt AC ở D Tính BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có AM là trung tuyến => M là trung điểm BC
=> MC/BC = 1/2
từ M vẽ MH//BD (H thuộc AC)
xét tam giác AMH có MH//ID (MH//BD)
=> ID/MH = AI/AM (hệ quả thales)
vì I là trung điểm AM nên ID/MH = AI/AM =1/2 (1)
xét tam giác BDC có MH//BD
=> MH/BD = MC/BC = 1/2 (hệ quả thales) (2)
từ (1) và (2) => \(\frac{ID}{MH}.\left(\frac{MH}{BD}\right)=\frac{1}{4}\)(3)
DỄ CHỨNG MINH: AD=DH=HC (chứng minh D là tđ AH, H là tđ DC)
=> AD=1/3.AC=4cm (bn tính AC bằng pitago trong tam giác ABC)
xét tam giác ABD vuông tại A có
BD^2=AB^2+AD^2
=> BD= \(\sqrt{41}\)cm
thế vào (3) tính được ID => tính đc BI (cộng đoạn thẳng)
Gọi E là trung điểm của CD.
Xét tam giác BDC ta có:
M là trung điểm của BC ( gt )
E là trung điểm của CD (cách vẽ)
=> EM là đường trung trực của tam giác BDC.
=> EM // BD => EM // ID ( I thuộc BD )
Xét tam giác AME có:
I là trung điểm của AM (gt)
EM // ID (cmt)
=> D là trung điểm của AE
Xét tam giác AME có:
I là trung điểm của AM (gt)
D là trung điểm của AE (cmt)
=> ID là đường trung bình của tam giác AME.
\(\Rightarrow ID=\frac{1}{2}ME\)
Mà \(ME=\frac{1}{2}BD\) ( ME là đường trung bình của tam giác BDC )
Nên \(ID=\frac{1}{4}BD\left(1\right)\)
Xét tam giác ABC vuông tại A ta có:
BC2 = AB2+AC2 ( Định lý Pitago thuận)
Thay:
132 = 52 + AC2
169 = 25 + AC2 => AC2 = 169 - 25 = 144
=> AC2 = 122
=> AC = 12 (cm)
Ta có: AD = ED ( D là trung điểm của AE )
ED = EC ( E là trung điểm của DC)
=> AD = ED = EC
Mà AD + ED + EC = AC (gt)
Nên: AD + AD + AD = AC
=> 3AD = AC
=> AD = AC/3
Mặt khác AC = 12 cm (cmt)
=> AD = 12/3 = 4 (cm)
Xét tam giác ABD vuông tại A ta có:
BD2 = AB2+AD2 ( định lý Pitago thuận)
BD2 = 52+42
BD2 = 25 + 20
BD2 = 45
=> \(BD=\sqrt{45}\Rightarrow BD=3\sqrt{5}\left(cm\right)\left(2\right)\)
Thế (2) vào (1) ta được:
\(ID=\frac{3\sqrt{5}}{4}\left(cm\right)\left(3\right)\)
Ta có:
BI + ID = BD ( I thuộc BD )
=> BI = BD - ID (4)
Thế (2), (3) vào (4) ta được:
\(BI=3\sqrt{5}-\frac{3\sqrt{5}}{4}\)
\(BI=3\sqrt{5}\left(1-\frac{1}{4}\right)\)
\(BI=3\sqrt{5}.\frac{3}{4}\)
\(BI=\frac{9\sqrt{5}}{4}\left(cm\right)\)
Gọi E là t/đ của DC
xét tg BDC có: M là t/đ của BC(gt) vf E là t/đ của DC(cách vẽ)=> ME là đg trung bình của tg BDC=>ME//BD. Mà I thuộc BD nên ID//ME
xét tg AME có: I là t/đ của AM (gt) và ID//ME(cmt)=> D là t/đ của AE
xét tg AME có: I là t/đ của AM và D là t/đ của AE=>ID là đg trung bình của tg AME=>ID=1/2ME
đến đây tự làm nha!