cho a,b,c,d>0 cmr
\(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Bạn tham khảo (hoàn toàn dùng Cô-si):
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Đẳng thức xảy ra khi a =b = c
b)Tương tự câu a
c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)
Nhưng dấu "=" không xảy ra nên ta có đpcm.
d) Chưa nghĩ ra.
Bài 2:
a) Đề thiếu (or sai hay sao ý)
d, Với a,b >0.Áp dụng bđt svac-xơ có:
\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)
=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha
Ta có :
\(\frac{a+b+c+d}{2a}=\frac{1}{2}+\frac{b+c+d}{2a}\ge2\sqrt{\frac{1}{2}.\frac{b+c+d}{2a}}=2.\sqrt{\frac{b+c+d}{4a}}=\sqrt{\frac{b+c+d}{a}}\)
Do đó : \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)