K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)

= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)

= 1
@Nguyen Thi Ngoc Linh

5 tháng 5 2018

\(\dfrac{x-2017}{2019}+\dfrac{x-2019}{2017}=\dfrac{x+6}{2021}\)

\(\Rightarrow\dfrac{x-2017}{2019}-1+\dfrac{x-2019}{2017}-1=\dfrac{x+6}{2021}-2\)

\(\Rightarrow\dfrac{x-2017}{2019}-\dfrac{2019}{2019}+\dfrac{x-2019}{2017}-\dfrac{2017}{2017}=\dfrac{x+6}{2021}-\dfrac{4042}{2021}\)

\(\Rightarrow\dfrac{x-2017-2019}{2019}+\dfrac{x-2019-2017}{2017}=\dfrac{x+6-4042}{2021}\)

\(\Rightarrow\dfrac{x-4036}{2019}+\dfrac{x-4036}{2017}=\dfrac{x-4036}{2021}\)

\(\Rightarrow\dfrac{x-4036}{2021}-\dfrac{x-4036}{2019}-\dfrac{x-4036}{2017}=0\)

\(\Rightarrow\left(x-4036\right)\left(\dfrac{1}{2021}-\dfrac{1}{2019}-\dfrac{1}{2017}\right)=0\)

=> x - 4036 = 0

=> x = 4036

8 tháng 5 2018

x − 2017/2019 + x−2019/2017 = x+6/2021

=> x − 2017/2019 + x−2019/2017 = x+6/2021

=> x − 2017/2019 − 1 + x − 2019/2017 − 1 = x + 6/2021 − 2

=> x − 2017/2019 − 1 + x − 2019/2017 − 1 = x + 6/2021 − 2

=> x − 2017/2019 − 2019/2019 + x − 2019/2017 − 2017/2017

= x + 6/2021 − 4042/2021

=> x − 2017/2019 − 2019/2019 + x − 2019/2017 2017/2017

= x + 6/2021 − 4042/2021

=> x − 2017 − 2019/ 2019 + x − 2019 − 2017/2017

= x + 6 − 4042/2021

=> x − 2017 − 2019/2019 + x − 2019 − 2017/2017 = x + 6 − 4042/2021

=> x − 4036/2019 + x − 4036/2017 = x − 4036/2021

=> x − 4036/2019 + x − 4036/2017 = x − 4036/2021

=> x − 4036/2021 − x − 4036/2019 − x − 4036/2017 = 0

=> x − 4036/2021 − x − 4036/2019 − x − 4036/2017 = 0

=>(x − 4036)(12021 − 12019 − 12017) = 0

=> x - 4036 = 0

=> x = 4036

4 tháng 8 2021

undefinedHình như là vậy á 

              Chúc bạn học tốt

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

11 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)

TH1: x+y=0

=> x=-y => P=0

TH2: xy=-z.(x+y+z)

\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)