K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

x+2y = 1 => x = 1- 2y thay vào A  là sẽ ra 

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$y^2+2^2\geq 4y$

$2(x^2+y^2)\geq 4xy$

$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$

$\Rightarrow x^2+y^2\geq 8$

Vậy $P_{\min}=8$ khi $x=y=2$

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

NV
8 tháng 9 2021

\(A=x^2+y^2-xy+2x-2y+2022\)

\(A=\left(x^2+\dfrac{y^2}{4}+1-xy+2x-y\right)+\dfrac{3}{4}y^2-y+2021\)

\(A=\left(x-\dfrac{y}{2}+1\right)^2+\dfrac{3}{4}\left(y-\dfrac{2}{3}\right)^2+\dfrac{6062}{3}\ge\dfrac{6062}{3}\)

\(A_{min}=\dfrac{6062}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{3};\dfrac{2}{3}\right)\)

8 tháng 9 2021

???