C/m: Nếu \(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\)
Với \(a,b,c,a',b',c'>0\)thì \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)
Hay \(VP\ge VT\)
Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
\(x^2-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}+2\right)-1=\frac{1}{4}\left(a-\frac{1}{a}\right)^2\)
\(\Rightarrow\sqrt{x^2-1}=\frac{1}{2}\left(a-\frac{1}{a}\right)\)
Tương tự \(\sqrt{y^2-1}=\frac{1}{2}\left(b-\frac{1}{b}\right)\)
\(A=\frac{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)-\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)+\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}=\frac{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}-ab-\frac{1}{ab}+\frac{a}{b}+\frac{b}{a}}{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}+ab+\frac{1}{ab}-\frac{a}{b}-\frac{b}{a}}\)
\(=\frac{\frac{a}{b}+\frac{b}{a}}{ab+\frac{1}{ab}}=\frac{a^2+b^2}{a^2b^2+1}\)
b/ \(B=\frac{\left(\sqrt{a+bx}+\sqrt{a-bx}\right)^2}{a+bx-\left(a-bx\right)}=\frac{a+\sqrt{a^2-b^2x^2}}{bx}\)
\(a^2-b^2x^2=a^2-\frac{4a^2m^2}{\left(1+m^2\right)^2}=\frac{a^2\left(m^4+2m^2+1\right)-4a^2m^2}{\left(1+m^2\right)^2}=\frac{a^2\left(1-m^2\right)^2}{\left(1+m^2\right)^2}\)
\(\Rightarrow B=\left(a+\frac{a\left(1-m^2\right)}{1+m^2}\right).\left(\frac{1+m^2}{2am}\right)=\frac{a+am^2+a-am^2}{2am}=\frac{1}{m}\)
.
.
.
.
.
.
...
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
Hello
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Bạn tham khảo:
Câu hỏi của Nguyễn Thu Trà - Toán lớp 9 | Học trực tuyến
Áp dụng bất đẳng thức \(\sqrt{\left(x+y\right)\left(m+n\right)}\ge\sqrt{xm}+\sqrt{yn}\) , có :
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự và cộng lại ta được :
\(VT\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh !
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Đề bài trá hình học sinh :)))))))))))))))0
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{a.a'}\right)^2\\ .\)
=> \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}\right)\\ \)
Dấu chính là điều phải chứng minh :))))))))))))
Bài này áp dụng BĐT Bunhiaacopxki ....................................>< .......................... Chúc học tốt <3
* Bổ sung*
Dấu = chính là ĐPCM.