CÓ 9 CHUỒNG, MỖI CHUỒNG NHỐT SỐ THỎ NHƯ NHAU. SAU KHI NGƯỜI TA LẤY RA Ở MỖI CHUỒNG MỘT ĐÔI THỎ THÌ SỐ THỎ LẤY RA ĐÚNG BẰNG SỐ THỎ LÚC ĐẦU Ở 3 CHUỒNG. HỎI LÚC ĐẦU CÓ TẤT CẢ BN CON THỎ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số thỏ lấy ra từ 9 chuồng là:
2x9=18(thỏ)
số thỏ ở 1 chuồng là:
18:3=6(thỏ)
số thỏ ban đầu là:
6x9=54(thỏ)
ĐS:54 con thỏ
CÁC BẠN TICK ĐÚNG CHO MÌNH NHÉ!!!
Nếu mỗi chuồng lấy 1 đôi thỏ thì lấy ra 1x6=6 đôi thỏ trong 6 chuồng hay 12 con thỏ nên mỗi chuồng có số thỏ là
12 / 3 = 4 ( con thỏ )
Vậy số thỏ ban đầu là
4 x 6 = 24 ( con thỏ )
Đ / S : 24 con thỏ
Đáp án C
Lúc đầu, số thỏ ở chuồng A bằng 2 5 số thỏ ở cả hai chuồng, sau khi bán 3 con ở chuồng A thì số thỏ ở chuồng A bằng 1 3 tổng số thỏ ở hai chuồng lúc đầu.
Vậy 3 con ứng với 2 5 - 1 3 = 1 15 (tổng số thỏ hai chuồng lúc đầu).
Tổng số thỏ của hai chuồng lúc đầu là: 3 : 1 15 = 45 (con).
Số thỏ ở chuồng A là: 2 5 . 45 = 18 (con).
Số thỏ ở chuồng B là: 45 – 18 = 27 (con).
Đáp án C
Lúc đầu, số thỏ ở chuồng A bằng 2 5 số thỏ ở cả hai chuồng, sau khi bán 3 con ở chuồng A thì số thỏ ở chuồng A bằng 1 3 tổng số thỏ ở hai chuồng lúc đầu.
Vậy 3 con ứng với 2 5 - 1 3 = 1 15 (tổng số thỏ hai chuồng lúc đầu).
Tổng số thỏ của hai chuồng lúc đầu là: 3 : 1 15 = 45 (con).
Số thỏ ở chuồng A là: 2 5 . 45 = 18 (con).
Số thỏ ở chuồng B là: 45 – 18 = 27 (con).
Câu hỏi của Nguyễn Thục Anh - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
lúc đầu
số thỏ chuồg a là 5 phần, số thỏ chuồg b là 4 phần.
hiệu số thỏ 2 chuồg: 5-4=1(phần)
tỉ số hiệu số thỏ 2 chuồg A là: 1:5= 1/5
*sau khi thêm 2 con vào chuôg B:
số thỏ chuồg A là 10 phần,chuồg B là 9phan
tỉ số hiệu số thỏ vs số thỏ chuồg A: (10-9):10= 1/10
2 con thỏ tg ứng vs số phần thỏ chuồg A là: 1/5 - 1/10 = 1/10
số thỏ chuồg A là:2.10=20(con)
số thỏ chuồg B là: (20:5).4 = 16 (con)
Ban đầu : Số thỏ chuồng A là 5 phần thì số thỏ chuồng B là 4 phần.
Hiệu số thỏ ở hai chuồng là : 5 - 4 = 1 (phần)
Vậy tỉ số giữa hiệu số thỏ với số thỏ ở chuồng A là: \(1:5=\frac{1}{5}\)
Sau khi thêm 2 con vào chuồng B:
Số thỏ ở chuồng A là 10 phần thì số thỏ chuồng B là 9 phần.
Hiệu số thỏ giữa hai chuồng là : 10 - 9 = 1 (phần)
Tỉ số giữa hiệu số thỏ với số thỏ ở chuồng A là: \(1:10=\frac{1}{10}\)
Hai con thỏ tương ứng với số phần số thỏ ở chuồng A là: \(\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\) (số thỏ ở chuồng A)
Vậy số thỏ ở chuồng A là: 2 x 10 = 20 (con)
Số thỏ ở chuồng B là: 20 : 5 x 4 = 16 (con)
Đáp số.
3 con thỏ ứng với số phần thỏ ở chuồng a là:
\(\frac{2}{5}-\frac{1}{3}=\frac{1}{15}\)( số phần thỏ ở chuồng a)
Chuồng a và b có số con là:
\(3:\frac{1}{15}=45\left(con\right)\)
Số thỏ lúc đầu ở chuồng a là:
\(45.\frac{2}{5}=18\left(con\right)\)
Vậy số thỏ lúc đầu ở chuồng a là 18 con
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
Số thỏ lấy ra là :
2x9=18 ( con)
Số thỏ ở 1 chuồng là :
18:3=6 (con)
Lúc đầu có số con thỏ là :
6x9=54 (con)
Đ/S: 54 con
18 con thỏ nha !