Cho tam giác ABC cân tại A , góc A bằng 20 độ , từ B kẻ BD ( D thuộc AC ) sao cho góc DBC= 60 độ , từ C kẻ CE (E thuộc AB) sao cho góc ECB=50 độ . Tính góc DEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do DF//BC⇒ˆAFD=ˆABCDF//BC⇒AFD^=ABC^ (hai góc ở vị trí đồng vị)
ˆADF=ˆACBADF^=ACB^ (hai góc ở vị trí đồng vị)
mà ΔABCΔABC cân đỉnh A nên ˆABC=ˆACBABC^=ACB^
⇒ˆAFD=ˆADF⇒ΔAFD⇒AFD^=ADF^⇒ΔAFD cân đỉnh A
⇒AF=AD⇒AF=AD
Xét ΔAFCΔAFC và ΔADBΔADB có:
AF=ADAF=AD (cmt)
ˆAA^ chung
AC=ABAC=AB (do ΔABCΔABC cân đỉnh A)
⇒ΔAFC=ΔADB⇒ΔAFC=ΔADB (c.g.c) (đpcm)
b) ⇒ˆACF=ˆABD⇒ACF^=ABD^ (hai góc tương ứng)
⇒ˆABC−ˆABD=ˆACB−ˆACF⇒ABC^−ABD^=ACB^−ACF^
⇒ˆDBC=ˆFCB⇒DBC^=FCB^
⇒ΔOBC⇒ΔOBC cân đỉnh O mà ˆCBD=60oCBD^=60o (giả thiết)
⇒ΔOBC⇒ΔOBC đều
c) Xét ΔABCΔABC cân đỉnh A có:
ˆABC=180o−ˆA2=80oABC^=180o−A^2=80o
Áp dụng tính chất tổng ba góc trong 1 tam giác vào ΔBCEΔBCE ta có:
ˆBEC+ˆBCE+ˆEBC=180oBEC^+BCE^+EBC^=180o
⇒ˆBEC=180o−(ˆBCE+ˆEBC)⇒BEC^=180o−(BCE^+EBC^)
=180o−(50o+80o)=50o=180o−(50o+80o)=50o
⇒ˆBEC=ˆBCE=50o⇒ΔBCE⇒BEC^=BCE^=50o⇒ΔBCE cân đỉnh B
⇒BE=BC⇒BE=BC mà BO=BCBO=BC (do ΔOBCΔOBC đều)
⇒BE=BO⇒ΔBEO⇒BE=BO⇒ΔBEO cân đỉnh B
⇒ˆEOB=180o−ˆEBO2=180o−20o2=80o⇒EOB^=180o−EBO^2=180o−20o2=80o
(ˆEBO=ˆEBC−ˆOBC)=80o−60o=20o(EBO^=EBC^−OBC^)=80o−60o=20o
d) Xét ΔFBCΔFBC có: ˆBFC=180o−ˆFBC−ˆFCBBFC^=180o−FBC^−FCB^
=180o−80o−60o=40o=180o−80o−60o=40o
ˆEOF=180o−ˆEOB−ˆBOC=180o−80o−60o=40oEOF^=180o−EOB^−BOC^=180o−80o−60o=40o
⇒ˆEFO=ˆEOF=40o⇒ΔEFO⇒EFO^=EOF^=40o⇒ΔEFO cân đỉnh E ⇒EF=EO⇒EF=EO (1)
Ta có: ΔODFΔODF có: ˆFOD=ˆBOC=60oFOD^=BOC^=60o (đối đỉnh)
ˆDFO=ˆOBC=60oDFO^=OBC^=60o (hai góc ở vị trí so le trong)
⇒ΔODF⇒ΔODF đều ⇒DF=DO⇒DF=DO (2)
Và DEDE chung (3)
Từ (1), (2) và (3) suy ra ΔEFD=ΔEODΔEFD=ΔEOD (c.c.c) (đpcm)
Bài này là bài của học sinh giỏi lớp 7 nên không dễ mà giải được đâu
https://olm.vn/hoi-dap/detail/219225140352.html
bạn xem ở link này (mình gửi cho)
Học tốt!!!!!!!!!!!
Đề này lúc trước bọn tui làm chỉ có mỗi câu 3 thôi,câu 1,2 đưa vào để gợi ý làm câu 3 ó.
b
Chắc bác cũng chứng minh được
\(\Delta GAD=\Delta KCD\left(ch-gn\right)\Rightarrow KC=AG\)
\(\Delta ABG=\Delta CGH\left(ch-gn\right)\Rightarrow AG=CH\)
\(\Rightarrow KC=CH\)
\(\Rightarrow\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{HCE}=\widehat{KCE}\Rightarrow CE\) phân giác
c
Mặt khác do \(\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{KEC}=\widehat{HEC}\)
Ta có:
\(\widehat{KEC}=\widehat{EBC}+\widehat{ECB}\)
\(\widehat{HEC}=\widehat{EAC}+\widehat{ECA}=\widehat{EBA}+\widehat{ECA}\)
Khi đó \(\widehat{EBC}+\widehat{ECB}=\widehat{EBA}+\widehat{ECA}\left(1\right)\)
Do \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}+\widehat{DBC}=\widehat{ECA}+\widehat{ECB}\left(2\right)\)
Cộng vế theo vế của ( 1 );( 2 ) suy ra \(\widehat{EBC}+\widehat{ECB}+\widehat{ABD}+\widehat{DBC}=\widehat{EBA}+\widehat{ECA}+\widehat{ECA}+\widehat{ECB}\)
\(\Rightarrow2\widehat{EBC}=2\widehat{ECA}\Rightarrow\widehat{EBC}=\widehat{ECA}\)
\(\RightarrowĐPCM\)
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c ) d , chiu
Cho Tam giác ABC cân tại a ( góc a nhỏ hơn 90 độ) kẻ BD vuông góc AC ( d thuộc AC ) ,CE vuông góc AB (e thuộc AB ) BD và CE cắt nhau tại h
A) c/m BD=CE
B) c/m Tam giác BHC là Tam giác cân
C) c/m AH là đường trung trực của BC
D) trên tia BD lấy điểmK sao cho D là Trung điểm của BK. So sánh góc ECB và góc ĐKC