Tìm x biết:
x+13334=4555+446
x-445=x+444
(x-1)+(x-2)+(x-3)+...+(x-999)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2.................999 x 2 x 2 x 2 ?
A.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 > 999 x 2 x 2 x 2 = 9990 > 7992
B.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 < 999 x 2 x 2 x 2 = 9990 < 7992
C.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 = 999 x 2 x 2 x 2 = 9990 = 7992
Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)
\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)
Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(2\sqrt{2}x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)
x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> ³√(4x³) = ³√(x + 1)³
<=> ³√4.x = x + 1
<=> ³√4.x - x = 1
<=> x(³√4 - 1) = 1
<=> x = 1/(³√4 - 1)
Ta có \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow x^2-x^2+2x=-4+3\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\sqrt{1}\)hoặc \(x=-\sqrt{1}\)
<=>\(\left(x^3-4x^2\right)+\left(x^2-4x\right)+\left(5x-20\right)=0\)
<=>\(x^2\left(x-4\right)+x\left(x-4\right)+5\left(x-4\right)=0\)
<=>\(\left(x^2+x+5\right)\left(x-4\right)=0\)
Vì \(x^2+x+5>0\)=>x-4=0
<=>x=4
a, x + 13334 = 5001
x = 5001 - 13334
x = -8333