Câu hỏi: Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì ? Vì sao ?
b) Tìm điều kiện của hình thang ABCD để MNPQ là :
Hình thoi ;
Hình chữ nhật ;
Hình vuông ;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hình vẽ bạn tham khảo bên hình của ban bên dưới.
Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)
Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau.
b) Đến MNPQ là:
- Hình thoi thì 2 cạnh MN = NP, mà MN = 1/2 AC, NP = 1/2 BD, suy ra hai đường chéo của hình thang bằng nhau => ABCD là thang cân
- Để MNPQ là hình chữ nhật thì MN vuông góc với NP => Hai đường chéo AC và BD của hình thang ABCD vuông góc với nhau
- Để MNPQ là hình vuông thì ta phải có cả 2 điều kiện trên, tức là ABCD là thang cân có hai đường chéo vuông góc với nhau.
a/
Xét \(\Delta ABC\) có
MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)
Xét \(\Delta ADC\) có
QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\) (3) Và PQ // AC (4)
Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)
Ta có MN // AC (2)
Xét tg ABD có
MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)
Gọi O là giao của MP và NQ. Từ (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)
\(\Rightarrow AC\perp BD\)
Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau
c/
Nếu MNPQ là hình thoi => QM=MN (1)
Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)
Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)
Từ (1) (2) và (3) => AC=BD
Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
Q là trung điểm của AD(gt)
P là trung điểm của CD(gt)
Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ(cmt)
MN=PQ(cmt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)
Hình bình hành MNPQ trở thành hình vuông khi
a) \(\Delta ABC\)có :
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của \(\Delta ABC\)
=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)
CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)
=> MN // PQ ; MN = PQ .
=> Tứ giác MNPQ là hình bình hành .
b) Theo câu a) , Ta có :
MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)
+) Hình bình hành MNPQ là hình thoi
=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\))
=> ABCD là hình thang cân .
+) Hình bình hành MNPQ là hình chữ nhật
\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD )
=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .
+) Hình bình hành MNPQ là hình vuông
\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)
=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .
a) Tam giác ABC có :
MA = MB (gt)NB = NC (gt)nên MN là đường trung bình của tam giác, do đó MN // AC và MN = 12AC.Chứng minh tương tự : PQ // AC và PQ = 1/2AC.Suy ra MN // PQ và MN = PQ.Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hính bình hànhCâu hỏi của Oanh Trần - Toán lớp 8 | Học trực tuyếncòn câu b mà bạn