Cho a,b,c>0 và a+b+c=3.Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}>=\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\)
=> \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\) (Cô si ngược + Rút gọn)
Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT,ta được: \(VT\ge\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)=3-\frac{ab+bc+ca}{2}\)
Mặt khác,ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (bạn tự c/m,không làm được ib)
Thay x = a; y = b ; z = c,ta có: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)
Suy ra\(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{1+b^2}=a-\frac{a^2b}{b^2+1}\ge a-\frac{a^2b}{2b}=a-\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
tc \(x^2+y^2\ge2xy\left(cauchy\right)\)
\(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)-ab}{1+b^2}=a-\frac{ab}{1+b^2}\ge a-\frac{ab}{2ab}\ge a-\frac{1}{2}\)(1)
tương tự \(\frac{b}{1+c^2}\ge b-\frac{1}{2}\)(2)
\(\frac{c}{1+a^2}\ge c-\frac{1}{2}\)(3)
từ (1)(2)(3)=> \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}\left(a+b+c=3\right)\)
=> đpcm