a. Cho a/a'=b/b'=c/c'=4.Hãy tính giá trị biểu thức a - 3b +2c/a' -3b + 2c'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TFBOYS
Tứ diệp thảo
cỏ bốn lá
Vương Tuấn Khải :9/11/1999 (9x)
Vương Nguyên :8/11/2000(10x)
Dịch Dương Thiên Tỉ :28/11/2000(10x)
The Fighting Boys
Hẹn ước 10 năm
Karry biệt danh là : Nam thần karry ,Tiểu bàng giải , Cua nhỏ , anh đao .................
Roy biệt danh là: Tiểu thang viên , trôi nhi , nguyên nhi ,...........
Jackson biệt danh là : Thiên Chỉ Hạc , Thiên Thiên , Học bá , hạc nhỏ , cục bông , đùi gà ,.............
Mình là : fan KT
\(\frac{a}{a^,}=\frac{b}{b^,}=\frac{c}{c^,}=-4\Rightarrow\)\(\frac{-a}{a^,}=\frac{-b}{b^,}=\frac{-c}{c^,}=\frac{-a+3b-2c}{a^,-3b^,+2c^,}=4\)
Vậy
\(\frac{-a+3b-2c}{a^,-3b^,+2c^,}=4\)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
\(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(P=\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)\(\)
\(2a=3b=4c\\ \Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2b}{8}=\dfrac{2c}{6}=\dfrac{a+b-c}{7}=\dfrac{a+2b-2c}{8}\\ \Leftrightarrow A=\dfrac{a+b-c}{a+2b-2c}=\dfrac{7}{8}\)
Sai đề! Sửa: that 2c+b-a=2c+a-b
Đặt 2a+b-c=x, 2b+c-a=y, 2c+a-b=z
\(\Rightarrow8\left(a+b+c\right)^3=\left(x+y+z\right)^3=x^3+y^3+z^3\)và \(P=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: \(\left(x+y+z\right)^3-x^3-y^3-z^3=0\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)-x^3-y^3=0\)
\(\Leftrightarrow3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=0\Leftrightarrow3\left(x+y\right)\left(xy+xz+yz+z^2\right)=0\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow3P=0\Leftrightarrow P=0\)