K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Trả lời

b)(1/3+12/67+13/41)-(79/67-28/41)

=1/3+12/67+13/41-79/67+28/41

=1/3+(12/67-79/67)+(13/41+28/41)

=1/3+(-67/67)+41/41

=1/3+(-1)+1

=1/3+0

=1/3.

18 tháng 6 2019

c)38/45-(8/45-17/51-3/11)

=38/45-8/45+17/51+3/11

=30/45+1/3+3/11

=2/3+1/3+3/11

=3/3+3/11

=1+3/11

=1 3/11.

23 tháng 6 2016

\(A=17\frac{2}{31}-\left(\frac{15}{17}+6\frac{2}{31}\right)=\left(17\frac{2}{31}-6\frac{2}{31}\right)-\frac{15}{17}=11-\frac{15}{17}=10+\left(1-\frac{15}{17}\right)=10\frac{2}{17}\)

23 tháng 6 2016

\(B=\left(31\frac{6}{13}-36\frac{6}{13}\right)+5\frac{9}{41}=-5+5\frac{9}{41}=\frac{9}{41}\)

C=\(\left(27\frac{51}{59}-7\frac{51}{59}\right)+\frac{1}{3}=20+\frac{1}{3}=20\frac{1}{3}\)

\(D=\left(13\frac{29}{31}-2\frac{28}{31}\right)+\left(4-3\frac{7}{8}\right)=11\frac{1}{31}+\frac{1}{8}=11\frac{8+31}{31.8}=11\frac{39}{248}\)

31 tháng 3 2019

a, \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=31\frac{6}{16}+5\frac{9}{41}-36\frac{6}{13}\)

\(=\left(31\frac{6}{16}-31\frac{6}{16}\right)+5\frac{9}{41}\)

\(=0+5\frac{9}{41}=5\frac{9}{41}\)

b, \(\left(17\frac{29}{31}-3\frac{7}{8}\right)-\left(2\frac{28}{31}-4\right)=17\frac{9}{31}-3\frac{7}{8}-2\frac{28}{31}+4\)

14 tháng 9 2016

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)