Cho tam giác ABC có đường phân giác của \(\widehat{B}\) là BH. Từ A kẻ đường song song với BH cắt cạnh CB kéo dài tại I. Tia phân giác của \(\widehat{ABI}\)cắt AI tại J. Chứng minh rằng:
a) \(\widehat{AIB}\)= \(\widehat{BAI}\)
b) BJ vuông góc với AI.
a) Ta có AI // BH => ^AIB = ^HBC và ^BAI = ^ABH (so le trong).
Mà ^HBC = ^ABH (BH là tia phân giác ^ABC) => ^AIB = ^BAI.
b) Bạn xét hai tam giác ABJ và IBJ.
(Nếu chưa học tam giác bằng nhau thì chứng minh như sau:
Ta thấy BJ và BH là tia phân giác của hai góc kề bù nên ^JBH = 90 độ.
Do AI // BH nên ^BJI = ^JBH = 90 độ => BJ vuông góc với AI.)
Cũng có thể giải cách này bạn :
a) Vì AI // BH => cặp góc so le trong bằng nhau
hay \(\widehat{A1}\) = \(\widehat{B2}\)
mà \(B2\) = \(\widehat{B1}\) ( BH là tia phân giác)
Vì AI // BH => cặp góc đồng vị bằng nhau
hay \(\widehat{B1}\) = \(\widehat{I1}\)
=> \(\widehat{A1}\)= \(\widehat{I1}\)
b) Vì BH là tia phân giác của \(\widehat{ABC}\)
=> \(\widehat{B2}\) = \(\widehat{B1}\) = \(\frac{\widehat{ABC}}{2}\)
Vì BJ là tia phân giác của \(\widehat{ABI}\)
=> \(\widehat{B3}\) = \(\widehat{B4}\) = \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC}}{2}\) + \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC+}\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) \(\frac{180^0}{2}\) = \(90^0\) ( Vì \(\widehat{ABC}\) và \(\widehat{ABI}\) là 2 góc kề bù)
hay \(\widehat{HBJ}\) = \(90^0\)
Vậy BJ vuông góc BH
BH // AI ( gt)
BJ vg BH
=> BJ vg AI