K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

i A M N B C

a)

Xét \(\Delta\)ABN và \(\Delta\)ACM có

\(\widehat{BAN}\)chung 

AB =AC ( \(\Delta ABC\)cân )

AN = AM ( gt)

\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )

\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)

Hay\(\widehat{IBC}=\widehat{ICB}\)

\(\Rightarrow\Delta IBC\)cân tại I

b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)

IB = IC (\(\Delta\)IBC cân ) (2)

Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )

Chúc bạn học giỏi !!!

29 tháng 7 2017

làm ơn giúp mik với ai giải đúng mik sẽ tích cho

8 tháng 2 2020

xét tam giácABN và tam giác ACM có  góc A chung

AM = AN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABN = tam giác ACM (c-g-c)

=> góc ABN = góc ACM (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (Gt)

góc ABN + góc NBC = góc ABC

góc ACM + góc MCB = góc ACB

=> góc IBC = góc ICB 

=> tam giác IBC cân tại I (đl)

16 tháng 11 2015

A B C M N I

Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)

=> tam giác ABN = ACM (c - g - c)

=> góc ABN = ACM (2 góc tương ứng)

Mà có góc ABC = ACB (do tam giác ABC cân tại A)

Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I

16 tháng 11 2015

Ko thì còn cách nào nữa Ngô Nam

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

16 tháng 12 2016

A B C M N I 1 2 1 2

a) Xét ΔABN và ΔACM có:

AB=AC(gt)

\(\widehat{A}\) : góc chung

AN=AM(gt)

=> ΔABN=ΔACM(c.g.c)

=> \(\widehat{B_1}=\widehat{C_1}\)

Vì: ΔABC cân tại A(gt)

=> \(\widehat{B}=\widehat{C}\)

Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)

\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)

Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

=> \(\widehat{B_2}=\widehat{C_2}\)

=> ΔBIC cân tại I

 

16 tháng 12 2016

Ta có hình vẽ sau:

B C A M N I

Vì ΔABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)

và AB = AC

Ta có: MB = AB - AM ; NC = AC - AN

mà AB = AC (cmt) ; AM = AN (gt)

=> MB = NC

Xét ΔNCB và ΔMBC có:

BC: Cạnh chung

\(\widehat{ABC}=\widehat{ACB}\) (cm trên)

MB = NC (cm trên)

=> ΔNCB = ΔMBC (c.g.c)

=> \(\widehat{NBC}=\widehat{MCB}\) (2 góc tương ứng)

\(\widehat{NBC}=\widehat{MCB}\) (cm trên) => ΔBIC cân (đpcm)

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

23 tháng 2 2020

Bài 1 : 

Xét \(\Delta ABC\)có AB = AC (gt)

=> \(\Delta ABC\)cân tại A

=> \(\widehat{B}=\widehat{C}\)

MÀ \(\widehat{C}=\)70

=> \(\widehat{B}=\)70

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>                       \(\widehat{A}+70^0+70^o=180^o\)

=>                     \(\widehat{A}=180^0-140^o=40^0\)

Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)

9 tháng 1 2016

Gọi giao điểm của AI và BC là K

Chứng minh tam giác BIC cân=> IB=IC

tam giác BAI= TG CAI=> Ai là pg của góc A

TG BAI=TG CAI=> góc BIA=góc CIA mà hai góc đó kề bù=> góc BAI vuông <=> AI vuông góc với BC

9 tháng 1 2016

Nguyễn Quang Thành tự mà vẽ ko ai rảnh

còn ko bít làm thì thui

a)

Xét (O) có 

\(\widehat{AMB}\) và \(\widehat{ANB}\) là các góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AMB}=90^0;\widehat{ANB}=90^0\)

Xét ΔAMB vuông tại M và ΔBNA vuông tại N có 

BC chung

\(\widehat{MAB}=\widehat{NBA}\)(ΔABC cân tại C)

Do đó: ΔAMB=ΔBNA(cạnh huyền-góc nhọn)

Suy ra: AM=BN(hai cạnh tương ứng)

b) Ta có: CM+AM=CA(M nằm giữa C và A)

CN+NB=CB(N nằm giữa C và B)

mà CA=CB(ΔCBA cân tại C)

và AM=BN(cmt)

nên CM=CN

Ta có: CM=CN(cmt)

nên C nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(=R)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OC là đường trung trực của MN

28 tháng 6 2021

bn có thể chứng minh đc góc AMB=ANB=90 độ bằng cách khác đc ko