Cách làm nhân hai lũy thừa khắc cơ số làm như thế nào vậy ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giữ nguyên cơ số rồi cộng số mũ
b) Áp dụng :
34 . 32 = 34+2 = 36
Nâng lên lũy thừa, hay sự mũ hóa, là quá trình nhân một giá trị của cơ số b với chính nó với số lần cho trước bởi số mũ n thành số hạng b^n. thì lũy thừa mới của b là tích của n nhân với m. ... tuy nhiên số bất kỳ nâng lên lũy thừa 0 đều bằng 1 miễn là giá trị của cơ số của nó không phải là 0.
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ.
Ví dụ: \(3^{11}:3^9=3^{11-9}=3.3=9\)
chú ý : Mọi số tự nhiên đều viết được dưới dạng tổng các lũy thừa của 10
HT
I. Phép nâng lên lũy thừa
Lũy thừa bậc n của a , kí hiệu an , là tích của n thừa số a :
an = a . a . ... . a với n ∈ N*
n thừa số
Số a được gọi là cơ số, n được gọi là số mũ
VD: 2 . 2 . 2 . 2 . 2 . 2 = 26
Quy ước: a1 = a
a2 còn được gọi là "a bình phương" hay "bình phương của a"
a3 còn được gọi là "a chính phương" hay "chính phương của a"
*Với n là số tự nhiên khác 0, ta có:
10n = 1 0 ... 0.
n chữ số 0
muốn chia hai luỹ thừ cùng cơ số ta giữ nguyên cơ số lấy số mũ lớn trừ số mũ nhỏ VD:
35 : 32= 35-2
1. Viết công thức:
- Nhân hai lũy thừa cùng cơ số: tổng 2 số mũ
xm . xn = xm+n
- Chia hai lũy thừa cùng cơ số: hiệu 2 số mũ
xm : xn = xm - n (x # 0, lớn hơn hoặc bằng n)
- Lũy thừa của 1 lũy thừa: Tích 2 số mũ
(xm )n = xm.n
- Lũy thừa của một tích: tích các lũy thừa
(x . y)n = xn . yn
- Lũy thừa của một thương: thương các lũy thừa
2. Thế nào là tỉ số của hai số hữu tỉ ? Cho ví dụ
- Số hữu tỉ là số viết đc dưới dạng phân số \(\frac{a}{b}\)
Vd: \(\frac{3}{4}\); 18
1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)
2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.
- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.
3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.
4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau
5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)
Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)
Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)
Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)
6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.
VD : \(\frac{8}{2}\) = 4
7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)
t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=\frac{b}{a}=\frac{d}{c}\)
\(ad=bc=\frac{b}{d}=\frac{a}{c}\)
\(ad=bc=\frac{d}{b}=\frac{c}{a}\)
T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)
8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn
vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................
9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.
Trục số thực là trục số biểu diễn các số thực
10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a
1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)
2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.
số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương
3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm
4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x
5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)
chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)
luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)
luỹ thừa của 1 tích: \(5.5=5^2\)
luỹ thừa của 1 thương:\(25:5=5^1\)
Đây là trường hợp thường gặp nên cách dễ nhất là tìm giá trị tùng lũy thừa rồi nhân chúng với nhau
ko biết