cho \(\widehat{AOB}\)và tia phân giác OC. Gọi OA'; OB'; OC' theo thứ tự là tia đối của các tia OA, OB, OC. Hãy chứng tỏ rằng OC' là tia phân giác của \(\widehat{A'OB'}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ
Gọi OD là tia đối của tia OA
Ta có \(\widehat{AOB}+\widehat{BOC}+\widehat{AOC}=360^o\)
Mà \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}\)suy ra \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}=360^o:3=120^o\)
Vì OA là tia đối của tia OD suy ra \(\widehat{AOB}+\widehat{BOD}=180^o\)( hai góc kề bù (
Mà \(\widehat{AOB}=120^o\)nên \(\widehat{BOD}=60^o\)
Ta thấy tia OD nằm giữa tia OB và tia OC nên \(\widehat{BOD}+\widehat{DOC}=\widehat{BOC}\)
Mà \(\widehat{BOC}=120^o;\widehat{BOD}=60^o\)nên \(\widehat{DOC}=60^o\)
Vì \(\widehat{DOC}=\widehat{DOB}=60^o\)và tia OD nằm giữa tia OB và tia OC nên OD là tia phân giác của góc BOC
Khi đó tia đối của tia OA là tia phân giác của góc BOC
Tương tự tia đối của tia OB;OC cũng là tia phân giác của góc AOC và góc AOB
Vậy...
Cảm ơn bạn Mon nhìu nha
Mặc dù không đầy đủ lắm nhưng mình coi đó là 1 gợi ý lớn cho mình
1 lần nữa cảm ơn!
Chú ý: câu a kẻ luôn tia Oa'' là tia đối của Oa!
a/ Ta có: \(\widehat{a''Ob}+\widehat{bOa}=180\) độ (kề bù)
\(\Rightarrow\widehat{a''Ob}+120=180\)
\(\Rightarrow\widehat{a''Ob}=180-120=60\)độ (1)
Ta lại có: \(\widehat{a''Oc}+\widehat{cOa}=180\)độ (kề bù)
\(\Rightarrow\widehat{a''Oc}+120=180\)
\(\Rightarrow\widehat{a''Oc}=180-120=60\)độ (2)
Từ (1),(2) ta có: \(\widehat{bOc}=120\)độ
Vậy: \(\widehat{aOb}=\widehat{aOc}=\widehat{bOc}\left(đpcm\right)\)
b) Vì đã tính ở câu a hết trơn nên câu này nhẹ nhàng lắm.
\(Oa''\)là phân giác \(\widehat{bOc}\)vì
+ \(Oa\)nằm giữa 2 tia \(Ob;Oc\)
+ \(\widehat{a''Ob}=\widehat{a''Oc}=\frac{\widehat{bOc}}{2}\)
Ps: Check lại coi có sai sót gì ko nha
CC' cắt BB'=>BOC=B'OC'
AA' cắt CC'=>AOC=A'OC'
OA và OA' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB nằm trên cùng 1 nửa mặt phẳng bờ CC'
OB và OB' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ OC'
=>OC' nằm giữa OA' và OB'
mà A'OC'=C'OB'=>OC' là tia phân giác của A'OB'
=>đpcm