1 . tính nhanh
A = \(\frac{1}{2}\) + \(\frac{1}{6}\) + \(\frac{1}{12}\) + \(\frac{1}{20}\) + ............. \(\frac{1}{99.100}\)
mk cần gấp giúp mk sẽ like cho mỗi ngày nếu đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(-A=\left(\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(-A=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+\frac{1}{8}-\frac{1}{7}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(-A=\frac{1}{10}-1=\frac{-9}{10}\Rightarrow A=\frac{9}{10}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Vậy A=-79/90
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}\)
\(B=\frac{99}{100}\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\)
\(=\frac{1.2........2016}{2.3.............2017}\)
\(=\frac{1}{2017}\)
a) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(x-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right).\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2015}{2016}.\frac{2016}{2017}=\frac{1}{2017}\)
\(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(C=1\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(C=1-\frac{1}{6}\)
\(C=\frac{5}{6}\)
Ta có : \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-.....-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+.....+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{1}{90}-\frac{80}{90}=\frac{-79}{90}\)
Đặt \(A=\left(...\right)\) ( tự ghi )
Ta có :
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(-A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(-\frac{1}{9}+\frac{1}{10}\)
\(-A=1-\frac{1}{9}-\frac{1}{9}+\frac{1}{10}\)
\(-A=\frac{79}{90}\)
\(A=\frac{-79}{90}\)
Chúc bạn học tốt ~
có liền luôn nè
1/2 -43/101+(-1/3)-1/6
= -43/101+(-1/3)-1/6+1/2
=-43/101+0
=-43/101
đơn giản :
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+........+\(\frac{1}{99.100}\)
A= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
A=1 - \(\frac{1}{100}\)
A= \(\frac{99}{100}\)
CÓ AI DÙNG HỌC 24 GIỜ KO
A = 1/2 + 1/6 / + 1/ 12 + 1/20 + ......+ 1/(99.100)
A= 1/ ( 1 x 2 ) + 1/ ( 2 x 3 ) + 1 / ( 3 x 4 ) + .....+ 1/ ( 99 x 100 )
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .................+ 1/99 - 1/100
A= 1 - 1/100
A= 99/100
CHÚC BẠN HỌC TỐT