cho hcn abcd có ad=18cm khoảng cách từ a đến đường cheo bd là 14,4 cm. tính chu vi hcn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ nên bạn chỉ cần tìm chiều dài hoặc chiều rộng sau đó cứ làm theo công thức sau : (dài + rộng) x 2
Hạ đường cao AH của tam giác ABD => AH=14,4cm
Pytago => AD^2-AH^2=DH^2
=> DH^2=116,64
=> DH=10,8cm
HT lượng => HA^2=HB.HC
=> HB=HA^2/HB=14,4^2/10,8=19,2cm
=> BD=HD+HB=10,8+19,2=30m
Pytago => AB^2=AH^2+HB^2=576
=> AB=24cm
=> chu vi HCN ABCD là: 2(AB+AD)=2(18+24)=84(cm^2)
Khoảng cách từ A đến BD là mình nghĩ còn thiếu . Tại chưa biết điểm cố định ở đâu mà . Bạn xem kĩ lại đề nha !
a) ABCD là hình chữ nhật nên BD=AC=15cm
b) AH vuông góc với BD tại H --> Khoảng cách A tới BD là độ dài AH
Xét tam giác ABD vuông tại A, đường cao AH: \(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AB^2}\)
Định lí Pythagoras: \(BD^2=AD^2+AB^2\)
Đã biết AB=8cm, BD=15cm ---> Dễ dàng tính được AH= 6,767cm
a,Xét \(\Delta AHB\) và \(\Delta BCD\) có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(ABCD\cdot là\cdot HCN,slt\right)\)
\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g-g\right)\)
b, Ta có : \(\Delta AHB\sim\Delta BCD\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{HB}{DC}\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{BC}{DC}\left(1\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{CD}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
\(\Rightarrow AH.ED=HB.EB\left(ĐPCM\right)\)
c, Xét ΔABD vuông tại A, định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét \(\Delta HDA\) và \(\Delta ADB\) có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\)
hay \(\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow AH=\dfrac{4.3}{5}=2,4\left(cm\right)\)
Xét ΔAHD vuông tại H, định lí Pi-ta-go ta được :
\(\Rightarrow DH=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{DC}\)
hay \(\dfrac{EB}{ED}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EB}{3}=\dfrac{ED}{4}=\dfrac{EB+ED}{3+4}=\dfrac{5}{7}\)
\(\Rightarrow EB=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\)
Ta có : \(EH=BD-DH-EB=5-1,8-\dfrac{15}{7}=\dfrac{37}{35}\) (cm)
\(\Rightarrow S_{AHE}=\dfrac{2,8.\dfrac{37}{35}}{2}=1,48\left(cm^2\right)\)
ví góc ACB = 30 độ nên tam giác ACB là nửa tam giác đều. Vì vậy nên cạnh AB bằng nửa cạnh huyền AC. Mà AC = BD( tính chất hcn) nên AB bằng 4. Biết AB và AC rồi dùng Pytago sẽ ra cạnh BC là căn 48 rồi sẽ tính được chu vi.