A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)\(< \frac{3}{4}\)
B=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
C=\(1+3+3^2+3^3+...+3^{100}\)
D=\(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\text{(đpcm) }\)
bài làm
C=1+3+32+.............+3100
C=3C−C2
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
⇒C=3100−12
D=2/D+D/3
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
⇒D=2101−23
B=31×4 +54×9 +79×16 +.........+1981×100
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100
⇒B=1−1/100
B=99/100 <100/100
Vậy B<1
#)Giải :
Bài 1 :
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)
Bài 2 :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
a)Xét vế trái , ta có :
Gọi tổng các số hạng ở vế trái là A
=> A= \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\)
=>3A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)
=> 3A - A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)- ( \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\))
=> 2A = 1 - \(\frac{1}{3^{99}}\)
=> A = \(\frac{1}{2}\)- \(\frac{1}{3^{99}.2}\) < \(\frac{1}{2}\)
b)\(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ ... + \(\frac{19}{9^2.10^2}\)
= \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ .... + \(\frac{19}{81.100}\)
= 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{9}\)+ ... + \(\frac{1}{81}\)- \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\) <1
a,
\(\sum\limits^{99}_{x=1}\left(\frac{1}{3^x}\right)=\frac{1}{2}\)
bài a nó có ............
kết quả là 3 chấm hỏi chấm
C=1+3+32+.............+3100
C=\(\frac{3C-C}{2}\)
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
\(\Rightarrow C=\frac{3^{100}-1}{2}\)
D=\(\frac{2D+D}{3}\)
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
\(\Rightarrow D=\frac{2^{101}-2}{3}\)
B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}\)
\(B=\frac{99}{100}< \frac{100}{100}\)
Vậy B<1