Tìm x:
a) (x-8)(x3+8)=0
b) (4x-3)-(x+5) =3(10-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(S=\left\{8,-2\right\}\)
\(b.\)
\(\left(4x-3\right)-\left(x+5\right)=3\cdot\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{38}{6}\)
\(S=\left\{\dfrac{38}{6}\right\}\)
a) (x - 8 )( x3 + 8) = 0
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x^3=-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b)(4x - 3) – ( x + 5) = 3(10 - x)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow3x-8=30-3x\)
\(\Leftrightarrow3x-8-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
\(a,\left(x-8\right)\left(x^3+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(b,\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\\ \Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow3x-8-30+3x=0\\ \Leftrightarrow6x-38=0\\ \Leftrightarrow x=\dfrac{19}{3}\)
TK
`a.(x-8)(x+8)=0`
`⇔³{x−8=0x³+8=2 `
`⇔³³{x=8x³=−2³ `
`⇔{x=8x=−2`
Vậy ` x = 8;-2`
`b. ( 4 x − 3 ) − ( x + 5 ) = 3 . ( 10 − x )`
`⇔ 4 x − 3 − x − 5 = 30 − 3 x`
`⇔ 3 x − 8 = 30 − 3 x`
`⇔ 3 x + 3 x = 30 + 8`
`⇔ 6 x = 38`
`⇔ x = 19/ 3`
Vậy ` x = 19/ 3`
b) Ta có: \(\dfrac{x-2}{4}=\dfrac{2x+1}{3}\)
\(\Leftrightarrow3\left(x-2\right)=4\left(2x+1\right)\)
\(\Leftrightarrow3x-6=8x+4\)
\(\Leftrightarrow3x-8x=4+6\)
\(\Leftrightarrow-5x=10\)
hay x=-2
Vậy: x=-2
Bài 2
P(x) + Q(x) = x3 – 6x + 2 + 2x2 - 4x3 + x - 5 = - 3x3 + 2x2 – 5x - 3
P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x3 − 2x2 − 7x+7
a.
$x^4-25x^3=0$
$\Leftrightarrow x^3(x-25)=0$
\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)
b.
$(x-5)^2-(3x-2)^2=0$
$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$
$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix}
-2x-3=0\\
4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=\frac{-3}{2}\\
x=\frac{7}{4}\end{matrix}\right.\)
c.
$x^3-4x^2-9x+36=0$
$\Leftrightarrow x^2(x-4)-9(x-4)=0$
$\Leftrightarrow (x-4)(x^2-9)=0$
$\Leftrightarrow (x-4)(x-3)(x+3)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)
d. ĐK: $x\neq 0$
$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$
$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$
$\Leftrightarrow -2(-x^2+3x-4)=0$
$\Leftrightarrow x^2-3x+4=0$
$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)
Vậy pt vô nghiệm.
a, <=>x2 +6x+9-4x-12=0
<=> x2 +2x -3=0
<=> x2 +3x -x-3=0
<=> x.(x+3) - (x+3) =0
<=> (x-1)(x+3)=0
<=> x=1 hoặc x=-3
b, <=> x(x2 -25) - (x-3)(x+3)2 -7=0
<=> x3 -25x + (9-x2) (x+3) -7=0
<=> x3 -25x+ 9x+27-x3 -3x2 -7=0
<=> -3x2 -16x +20=0
<=>(3x-10)(x-2) =0 (đoạn này tự phân tích nha ^ ^)
<=> x= 10/3 hoặc x=2
Chúc bạn học tốt nha!
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.