Cho tam giác ABC vuông góc tại a,AB = 8 cm,AC = 6 cm,AD là tia phân giác của góc a
a, tính DB trên DC
b,kẻ đường cao AH.CM rằng tam giác AHB đồng dạng với tam giác CHA
c,CM tam giác AHB đồng dạng với tam giác CHA..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tg ABC có :AD là tia phân giác=>DB/AB=DC/AC=>DB/DC=AB/AC,mà AB/AC=8/6=4/3=>DB/DC=4/3
b)xét tg AHB và tg CHA có: ^AHB=^CHA=9 , ^HAB=^HCA(cùng phụ vs CAH) =>tg AHB đ.dạng vs tg CHA (g.g)
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)
a) Sử dụng định lí Pita go tính đc BC=10 cm
Vì AD là phân giác góc A , D thuộc Bc nên ta có:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)
b) Xét tam giác AHB và tam giác CHA
có: \(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)
=> tam giác ABH đồng dạng tam giác CHA
c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)
Xét tam giác AHB vuông và tam giác AHC vuông
Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)
\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)
\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)