Giải phương trình vô tỉ sau: \(x^2-3x+1=\frac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)
dat \(\left(x-1\right)\left(x+1\right)=y\)
\(4y-3x=\sqrt[3]{x^2y}\)
\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)
\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)
\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)
de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)
\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
câu b tương tự nhé bạn
ĐKXĐ: x lớn hơn hoặc bằng -1 và x nhỏ hơn hoặc bằng 1.
\(4+2\sqrt{1-x}=-3x+5\sqrt{x+1}+\sqrt{1-x^2}\)
\(\Leftrightarrow4+2\left(\sqrt{1-x}-1\right)+2=-3x+5\left(\sqrt{x+1}-1\right)+\left(\sqrt{1-x^2}-1\right)+5+1\)
\(\frac{-2x}{\sqrt{1-x}+1}=-3x+\frac{5x}{\sqrt{x+1}+1}-\frac{x^2}{\sqrt{1-x^2}+1}\Leftrightarrow x\left(\frac{x}{\sqrt{1-x^2}+1}-\frac{5}{\sqrt{x+1}+1}-\frac{2}{\sqrt{1-x}+1}+3\right)=0\)
\(\Leftrightarrow x=0.\)
\(Pt\Leftrightarrow3\left(x+1\right)+2\sqrt{1-x}+1=5\sqrt{x+1}+\sqrt{1-x^2}\)
đặt \(\sqrt{x+1}=a,\sqrt{1-x}=b\)
\(\Leftrightarrow3a^2+2b+1=a\left(5+b\right)\)
\(\Leftrightarrow3a^2-\left(5+b\right)a+2b+1=0\)
\(\Delta=b^2-4ac=\left(-b-5\right)^2-4.3.\left(2b+1\right)\)
\(=b^2+10b+25-24b-12\)
\(=b^2-14b+13\)
\(TH1:\Rightarrow a=\frac{5+b+\sqrt{b^2-14b+13}}{6}\)
\(\Rightarrow6a-5-b=\sqrt{b^2-14b+13}\)
\(\Rightarrow6\sqrt{1+x}-5-\sqrt{1-x}=\sqrt{1-x-14\sqrt{1-x}+13}\)
\(\hept{\begin{cases}x=0\left(nhan\right)\\x=......\left(loai\right)\end{cases}}\)
TH2:\(a=\frac{5+b-\sqrt{b^2-14b+13}}{6}\)
\(.............................................\)
cách này hơi dài.